freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

倒數(shù)的認(rèn)識(shí)教學(xué)反思(編輯修改稿)

2024-10-21 06:25 本頁面
 

【文章內(nèi)容簡(jiǎn)介】 為同學(xué)”,什么是“互為倒數(shù)”,不僅調(diào)動(dòng)了同學(xué)們學(xué)習(xí)的積極性,更重要的是讓學(xué)生在不知不覺中理解了“互為”的含義,分散了教學(xué)的難點(diǎn)。這節(jié)課還注意充分發(fā)揮學(xué)生的主體作用。如新授一開始,就讓學(xué)生觀察每道算式,找出共同點(diǎn),引出倒數(shù)的意義。而后又讓學(xué)生觀察互為倒數(shù)的兩個(gè)數(shù)的變化規(guī)律,得出“求一個(gè)數(shù)的倒數(shù)”的方法。提倡小組合作是否本課的一個(gè)重要特點(diǎn),在討論中,老師真正以一個(gè)組織者、引導(dǎo)者的身份出現(xiàn),實(shí)現(xiàn)互動(dòng)對(duì)話式教學(xué)。在求倒數(shù)方法之后,我出示了小組討論題(以兩個(gè)同學(xué)的爭(zhēng)論為載體):引出怎樣求一個(gè)整數(shù)的倒數(shù)?1的倒數(shù)是幾?哪些數(shù)可能沒有倒數(shù)?由此學(xué)生展開激烈的討論交流,整數(shù)的倒數(shù)就用1除以整數(shù),1的倒數(shù)是1,0沒有倒數(shù)。 “1的倒數(shù)為什么是1?”“0為什么沒有倒數(shù)?” “0沒有倒數(shù)是因?yàn)槿螖?shù)乘0都得0而不可能等于1,且“0作除數(shù)無意義。因此,0沒有倒數(shù)?!毙抡n程標(biāo)準(zhǔn)中指出既要關(guān)注學(xué)生的學(xué)習(xí)結(jié)果,又要關(guān)注學(xué)生的學(xué)習(xí)過程,更要關(guān)注他們?cè)诨顒?dòng)過程中所表現(xiàn)出來的情感與態(tài)度。在本課中,學(xué)生對(duì)同伴提出的問題賦予很大的探究熱情,比老師直截了當(dāng)?shù)亟o予要強(qiáng)烈得多。作為新課程的實(shí)施者應(yīng)更好地保護(hù)學(xué)生的這種求知欲,保護(hù)學(xué)生提問的信心,這樣才能讓我們的課堂更有人情味,更有生氣,更有參與性,學(xué)生才能真正地脫離教師的疆繩,不總是被教師牽著鼻子走。這節(jié)課中,學(xué)生從觀察中比較,從比較中發(fā)現(xiàn),從發(fā)現(xiàn)中提問“整數(shù)有倒數(shù)嗎?小數(shù)有倒數(shù)嗎?”這是一個(gè)從歷來順受到“叛逆”的福音,我們就是要打破這種陳規(guī),把學(xué)生置于學(xué)習(xí)的最高領(lǐng)域,我們應(yīng)當(dāng)持積極的態(tài)度順應(yīng)、保護(hù)并提倡學(xué)生提問的習(xí)慣。并引導(dǎo)學(xué)生主動(dòng)去把握探究的樂趣。只有歷經(jīng)思維磨礪,他們才能深刻體會(huì)到其中的挫折、失敗、樂趣和成功?!兜箶?shù)的認(rèn)識(shí)》這一課內(nèi)容比較簡(jiǎn)單,學(xué)生容易接受,是在學(xué)生已經(jīng)熟練掌握分?jǐn)?shù)乘法的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的,為下章節(jié)分?jǐn)?shù)除法教學(xué)打好基礎(chǔ)。我在備課時(shí)考慮到學(xué)生情況,改變了以往的教學(xué)方式,充分發(fā)揮學(xué)生的主體作用,創(chuàng)設(shè)情境,讓學(xué)生自主提出問題,自主解決。讓學(xué)生經(jīng)歷提問、驗(yàn)證、爭(zhēng)論、交流等獲取知識(shí)的過程。讓學(xué)生經(jīng)歷提出問題、自探問題、應(yīng)用知識(shí)的過程,理解倒數(shù)的意義自主總結(jié)出求倒數(shù)的方法。為了讓學(xué)生獲得充分的經(jīng)歷感知,取得良好的情感體驗(yàn)。通過本節(jié)課的教學(xué),大部分學(xué)生能夠很好的理解倒數(shù)的意義,掌握求一個(gè)數(shù)的倒數(shù)的方法,但有一部分學(xué)生對(duì)于倒數(shù)的認(rèn)識(shí),可能僅僅是停留在是不是分子分母顛倒這一表面形式上,忽略了兩個(gè)數(shù)的乘積為1這一條件。因此還應(yīng)在后面分?jǐn)?shù)除法的計(jì)算等內(nèi)容中及時(shí)復(fù)習(xí)以鞏固。倒數(shù)的認(rèn)識(shí)教學(xué)反思7教學(xué)說明:讓學(xué)生經(jīng)歷提出問題、自探問題、應(yīng)用知識(shí)的過程,理解倒數(shù)的意義自主總結(jié)出求倒數(shù)的方法。反思:本節(jié)課中,在探究新知之前,我打破數(shù)學(xué)教學(xué)常規(guī),進(jìn)行學(xué)科整合,借助語文學(xué)科與數(shù)學(xué)學(xué)科之間的聯(lián)系為切入點(diǎn),由文字構(gòu)成規(guī)律引發(fā)學(xué)生數(shù)學(xué)思維火花,把文字構(gòu)成規(guī)律變成數(shù)字,進(jìn)行鋪墊。引發(fā)學(xué)生探究數(shù)學(xué)的欲望,極大調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣。接著設(shè)疑引發(fā)學(xué)生提出問題:關(guān)于倒數(shù)你想知道些什么?學(xué)生提出的問題是:什么是倒數(shù)?倒數(shù)的意義是什么?倒數(shù)有什么特點(diǎn)?學(xué)生在探究新知識(shí)的同時(shí),能夠自己舉一些倒數(shù)的例子,提出自己的問題,讓學(xué)生自己發(fā)現(xiàn)倒數(shù)的一些特點(diǎn):每組中的兩個(gè)數(shù)相乘的積是1;每組中的兩個(gè)數(shù)的分子和分母的位置互相顛倒;每組中的兩個(gè)數(shù)是相互依存的關(guān)系,不能孤立。依據(jù)倒數(shù)的特點(diǎn)讓學(xué)生自己舉例驗(yàn)證以上發(fā)現(xiàn)是否正確。在爭(zhēng)論數(shù)字0和1的倒數(shù)問題時(shí),我創(chuàng)設(shè)情景境,通過兩個(gè)卡通人物(明明、紅紅)發(fā)生爭(zhēng)論 ――0和1都有倒數(shù),0和1都沒有倒數(shù),課堂上學(xué)生引起了較大的爭(zhēng)議,學(xué)生沒有從分?jǐn)?shù)的角度去發(fā)現(xiàn)0不能作為分?jǐn)?shù)的分母,所以產(chǎn)生了0有倒數(shù)的念頭,再次的小組辯論。得出0不能作除數(shù)、0不能作分母。0沒有倒數(shù)的結(jié)論。而1這個(gè)數(shù)字學(xué)生還是會(huì)發(fā)現(xiàn)1的倒數(shù)就是一分之一,也就是1。在教學(xué)求倒數(shù)的方法時(shí),學(xué)生也能根據(jù)已學(xué)的知識(shí)自主解決,老師只是作為輔助,學(xué)生自行總結(jié)求倒數(shù)的法。但是整數(shù)到底有沒有倒數(shù)?整數(shù)怎么樣來求倒數(shù)?要怎么樣把一個(gè)整數(shù)看成是分母是1的分?jǐn)?shù),再調(diào)換它們的位置。這樣開放性題目,學(xué)生要經(jīng)過小組合作才可以填出來,沒有辦法獨(dú)立思考。所以,我覺得以后的內(nèi)容就應(yīng)該多出一些具有挑戰(zhàn)性的題目,以幫助學(xué)生更好地理解新知識(shí)的應(yīng)用。倒數(shù)的認(rèn)識(shí)教學(xué)反思8倒數(shù)的認(rèn)識(shí)這部分內(nèi)容是在分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的。學(xué)習(xí)倒數(shù)主要是為后面學(xué)習(xí)分?jǐn)?shù)除法作準(zhǔn)備的。因?yàn)橐粋€(gè)數(shù)除以一個(gè)分?jǐn)?shù)的計(jì)算方法是歸結(jié)為乘這個(gè)分?jǐn)?shù)的倒數(shù)。所以學(xué)好這部分內(nèi)容對(duì)之后學(xué)習(xí)分?jǐn)?shù)除法是至關(guān)重要的。由于我是六年級(jí)數(shù)學(xué)組第一單元的把關(guān)教師,本課又是我的單元課,所以在課前,看了不少關(guān)于這課的教學(xué)設(shè)計(jì),覺得是五花八門,各有所長(zhǎng),最終根據(jù)我班學(xué)生的學(xué)習(xí)情況,設(shè)計(jì)了教學(xué)方案,取得了不錯(cuò)的教學(xué)效果,主要表現(xiàn)在以下幾點(diǎn):一、特色引入,直奔主題。在本課的引入中,我通過談話讓學(xué)生了解對(duì)比相互的反義詞及位置交換,再通過讓男女學(xué)生計(jì)算小黑板不同的兩組乘法算式,觀察積的特點(diǎn)與算式中兩個(gè)因數(shù)的特點(diǎn),直接對(duì)倒數(shù)形成了初步的認(rèn)識(shí),更明白了只要調(diào)換分子與分母的位置就會(huì)得到一個(gè)新的分?jǐn)?shù)。然后讓學(xué)生對(duì)具有這樣特點(diǎn)的兩個(gè)分?jǐn)?shù)起名,學(xué)生不約而同的叫它們倒數(shù)。為了使學(xué)生深入了解倒數(shù)的意義,我引導(dǎo)學(xué)生舉了大量分?jǐn)?shù)的例子,并通過觀察、計(jì)算等方法使學(xué)生明確“互為倒數(shù)的兩個(gè)數(shù)的乘積是1”、“倒數(shù)的兩個(gè)數(shù)只是把分子和分母的位置進(jìn)行調(diào)換”、更讓我高興的是學(xué)生能注意到“倒數(shù)是相互依存的”。抓住學(xué)生的這一發(fā)現(xiàn),我引導(dǎo)他們很快就總結(jié)出了倒數(shù)的概念——乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)。在強(qiáng)調(diào)重點(diǎn)時(shí),學(xué)生發(fā)現(xiàn)在數(shù)學(xué)上還有像倒數(shù)這樣的情況,如約數(shù)和倍數(shù),倒數(shù)也是相互依存的。二、讓學(xué)生在碰撞中體驗(yàn)到成功的快樂。著名教育家蘇霍姆林斯基說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,那就是希望自己是一個(gè)發(fā)現(xiàn)者和探索者。”而在兒童的心理,這種需求特別強(qiáng)烈。為了符合學(xué)生的這一心理特點(diǎn),我在教學(xué)求一個(gè)數(shù)的倒數(shù)的方法上讓學(xué)生以生問生答的形式進(jìn)行,在我的鼓勵(lì)下,學(xué)生開始是提出整數(shù)、真分?jǐn)?shù)、假分?jǐn)?shù),接著想到帶分?jǐn)?shù)、小數(shù),進(jìn)一步想到兩個(gè)特例1和0, 面對(duì)特殊的0和1這兩個(gè)數(shù)時(shí),學(xué)生們出現(xiàn)了小小的“爭(zhēng)執(zhí)”。有人認(rèn)為:“0和1有倒數(shù)?!庇腥苏J(rèn)為:“0和1沒有倒數(shù)?!睂?duì)于學(xué)生的“爭(zhēng)執(zhí)”我沒有直接介入,而是引導(dǎo)他們互相說說自己的理由,在他們的交流中,學(xué)生們達(dá)成了一致的認(rèn)識(shí):0沒有倒數(shù),1的倒數(shù)是它本身。并且在說明理由時(shí),學(xué)生還認(rèn)為“0不能做分母,所以0沒有倒數(shù)”,“0乘任何數(shù)都得0,不可能得到1”這兩個(gè)理由,拓展了我所提供給學(xué)生的知識(shí)內(nèi)容,學(xué)生在深入思考中得出結(jié)論,這就是學(xué)生學(xué)習(xí)的成果。我覺得,這樣做不僅增添了課堂活力,而且還讓學(xué)生經(jīng)歷了探
點(diǎn)擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1