freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx學(xué)年新人教版數(shù)學(xué)九年級上學(xué)期期中試題含解析(編輯修改稿)

2025-01-02 21:44 本頁面
 

【文章內(nèi)容簡介】 ∠OBC ,所以∠C= AOB=30176。 . 【解答】 解:連結(jié) OB,如圖, ∵A B與 ⊙O 相切, ∴OB⊥AB , ∴∠ABO=90176。 , ∵∠A=30176。 , ∴∠AOB=60176。 , ∵∠AOB=∠C+∠OBC , 而 ∠C=∠OBC , ∴∠C= AOB=30176。 . 故選: A. 【點(diǎn)評】 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑. 10.對于二次函數(shù) y=( x﹣ 1) 2+2的圖象,下列說法正確的是( ) A.開口向下 B.對稱軸是 x=﹣ 1 C.頂點(diǎn)坐標(biāo)是( 1, 2) D.與 x軸有兩個(gè)交點(diǎn) 【考點(diǎn)】 二次函數(shù)的性質(zhì). 【專題】 常規(guī)題型. 【分析】 根據(jù)拋物線的性質(zhì)由 a=1得到圖象開口向上,根 據(jù)頂點(diǎn)式得到頂點(diǎn)坐標(biāo)為( 1, 2),對稱軸為直線 x=1,從而可判斷拋物線與 x軸沒有公共點(diǎn). 【解答】 解:二次函數(shù) y=( x﹣ 1) 2+2 的圖象開口向上,頂點(diǎn)坐標(biāo)為( 1, 2),對稱軸為直線 x=1,拋物線與 x軸沒有公共點(diǎn). 故選: C. 【點(diǎn)評】 本題考查了二次函數(shù)的性質(zhì):二次函數(shù) y=ax2+bx+c( a≠0 )的頂點(diǎn)式為 y=a( x﹣ )2+ ,的頂點(diǎn)坐標(biāo)是(﹣ , ),對稱軸直線 x=﹣ b2a,當(dāng) a> 0時(shí),拋物線 y=ax2+bx+c( a≠0 )的開口向上,當(dāng) a< 0時(shí),拋物線 y=ax2+bx+c( a≠0 )的開口向下. 11.二次函數(shù) y=ax2+bx+c( a, b, c為常數(shù),且 a≠0 )中的 x與 y的部分對應(yīng)值如下表: X ﹣ 1 0 1 3 y ﹣ 1 3 5 3 下列結(jié)論: ( 1) ac< 0; ( 2)當(dāng) x> 1時(shí), y的值隨 x值的增大而減?。? ( 3) 3是方程 ax2+( b﹣ 1) x+c=0的一個(gè)根; ( 4)當(dāng)﹣ 1< x< 3時(shí), ax2+( b﹣ 1) x+c> 0. 其中正確的個(gè)數(shù)為( ) A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè) 【考點(diǎn)】 二次函數(shù)的性質(zhì);二次函數(shù)圖象與系數(shù)的關(guān)系;拋物線與 x軸的交點(diǎn);二次函數(shù)與不等式(組). 【專題】 壓軸題;圖表型. 【分析】 根據(jù)表格數(shù)據(jù)求出二次函數(shù)的對稱軸為直線 x=,然后根據(jù)二次函數(shù)的性質(zhì)對各小題分析判斷即可得解. 【解答】 解:( 1)由圖表中數(shù)據(jù)可得出: x=1時(shí), y=5,所以二次函數(shù) y=ax2+bx+c開口向下,a< 0;又 x=0時(shí), y=3,所以 c=3> 0,所以 ac< 0,故( 1)正確; ( 2) ∵ 二次函數(shù) y=ax2+bx+c 開口向下,且對稱軸為 x= =, ∴ 當(dāng) x≥ 時(shí), y 的值隨 x值的增大而減小,故( 2)錯(cuò)誤; ( 3) ∵x=3 時(shí), y=3, ∴9a+3b+c=3 , ∵c=3 , ∴9a+3b+3=3 , ∴9a+3b=0 , ∴3 是方程 ax2+( b﹣ 1) x+c=0的一個(gè)根,故( 3)正確; ( 4) ∵x= ﹣ 1時(shí), ax2+bx+c=﹣ 1, ∴x= ﹣ 1時(shí), ax2+( b﹣ 1) x+c=0, ∵x=3 時(shí), ax2+( b﹣ 1)x+c=0,且函數(shù)有最大值, ∴ 當(dāng)﹣ 1< x< 3時(shí), ax2+( b﹣ 1) x+c> 0,故( 4)正確. 故選: B. 【點(diǎn)評】 本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,拋物線與 x軸的交點(diǎn), 二次函數(shù)與不等式,有一定難度.熟練掌握二次函數(shù)圖象的性質(zhì)是解題的關(guān)鍵. 12.如圖, P為 ⊙O 的直徑 BA延長線上的一點(diǎn), PC與 ⊙O 相切,切點(diǎn)為 C,點(diǎn) D是 ⊙ 上一點(diǎn),連接 PD.已知 PC=PD=BC.下列結(jié)論: ( 1) PD與 ⊙O 相切;( 2)四邊形 PCBD是菱形;( 3) PO=AB;( 4) ∠PDB=120176。 . 其中正確的個(gè)數(shù)為( ) A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè) 【考點(diǎn)】 切線的判定與性質(zhì);全等三角形的判定與性質(zhì);菱形的判定. 【專題】 幾何綜合題. 【分析】 ( 1)利用切線的性質(zhì)得出 ∠PCO=90176。 ,進(jìn)而得出 △PCO≌△PDO ( SSS),即可得出∠PCO=∠PDO=90176。 ,得出答案即可; ( 2)利用( 1)所求得出: ∠CPB=∠BPD ,進(jìn)而求出 △CPB≌△DPB ( SAS),即可得出答案; ( 3)利用全等三角形的判定得出 △PCO≌△BCA ( ASA),進(jìn)而得出 CO= PO= AB; ( 4)利用四邊形 PCBD是菱形, ∠CPO=30176。 ,則 DP=DB,則 ∠DPB=∠DBP=30176。 ,求出即可. 【解答】 解:( 1)連接 CO, DO, ∵PC 與 ⊙O 相切,切點(diǎn)為 C, ∴∠PCO=90176。 , 在 △PCO 和 △PDO 中, , ∴△PCO≌△PDO ( SSS), ∴∠PCO=∠PDO=90176。 , ∴PD 與 ⊙O 相切, 故( 1)正確; ( 2)由( 1)得: ∠CPB=∠BP D, 在 △CPB 和 △DPB 中, , ∴△CPB≌△DPB ( SAS), ∴BC=BD , ∴PC=PD=BC=BD , ∴ 四邊形 PCBD是菱形, 故( 2)正確; ( 3)連接 AC, ∵PC=CB , ∴∠CPB=∠CBP , ∵AB 是 ⊙O 直徑, ∴∠ACB=90176。 , 在 △PCO 和 △BCA 中, , ∴△PCO≌△BCA ( ASA), ∴AC=CO , ∴AC=CO=AO , ∴∠COA=60176。 , ∴∠CPO=30176。 , ∴CO= PO= AB, ∴PO=AB , 故( 3)正確; ( 4) ∵ 四邊形 PCBD是菱形, ∠CPO=30 176。 , ∴DP=DB ,則 ∠DPB=∠DBP=30176。 , ∴∠PDB=120176。 , 故( 4)正確; 正確個(gè)數(shù)有 4個(gè), 故選: A. 【點(diǎn)評】 此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識,熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵. 二、填空題:(每題 4分,共 24分) 13.若關(guān)于 x的一元二次方程 x2﹣ 2x﹣ k=0沒有實(shí)數(shù)根,則 k的取值范圍是 k<﹣ 1 . 【考點(diǎn)】 根的判別式. 【分析】 根據(jù)關(guān)于 x的一元二次方程 x2﹣ 2x﹣ k=0沒有實(shí)數(shù)根,得出 △=4+4k < 0,再進(jìn)行計(jì)算即 可. 【解答】 解: ∵ 一元二次方程 x2﹣ 2x﹣ k=0沒有實(shí)數(shù)根, ∴△= (﹣ 2) 2﹣ 41 (﹣ k) =4+4k< 0, ∴k 的取值范圍是 k<﹣ 1; 故答案為: k<﹣ 1. 【點(diǎn)評】 本題考查了一元二次方程 ax2+bx+c=0( a≠0 )的根的判別式 △=b 2﹣ 4ac:當(dāng) △ > 0, 方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng) △=0 ,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng) △ < 0,方程沒有實(shí)數(shù)根. 14.已知一元二次方程 x2﹣ 3x﹣ 3=0的兩根為 a與 b,則 的值是 ﹣ 1 . 【考點(diǎn)】 根與系數(shù)的關(guān)系. 【專題】 計(jì)算題. 【分析】 根據(jù)根與系數(shù)的關(guān)系得 到 a+b=3, ab=﹣ 3,再把原式變形得到 ,然后利用整體代入的方法進(jìn)行計(jì)算. 【解答】 解:根據(jù)題意得 a+b=3, ab=﹣ 3, 所以原式 = = =﹣ 1. 故答案為﹣ 1. 【點(diǎn)評】 本題考查了一元二次方程 ax2+bx+c=0( a≠0 )的根與系數(shù)的關(guān)系:若方程的兩根為x1, x2,則 x1+x2=﹣ , x1?x2= . 15.如圖,點(diǎn) A、 B、 P 在 ⊙O 上, ∠APB=50176。 ,若 M是 ⊙O 上的動(dòng)點(diǎn),則等腰 △ABM 頂角的度
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1