【總結】相似三角形復習(2)△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點,CD與BE相
2025-10-31 12:54
【總結】相似三角形的應用(一)已知:如圖,BD、CE是△ABC的高,試說明△ADE∽△ABC。ABCDE如圖:在Rt△ABC中,∠ABC=900,BD⊥AC于DABDCEF問:若E是BC中點,ED的延長線交BA的延長線于F,求證:AB:BC=DF
2025-11-15 16:37
【總結】相似三角形應用舉例相似三角形的判定(1)通過平行線。(2)三邊對應成比例.(3)兩邊對應成比例且夾角相等。(4)兩角相等。相似三角形的性質(1)對應邊的比相等,對應角相等(2)相似三角形的周長比等于相似比(3)相似三角形的面積比等于相似比的平方(4)相似三角形的對應邊上的高、中線、
2025-08-01 17:44
【總結】相似三角形的應用甘肅省隴南市武都區(qū)兩水中學唐小平2.的比,的比,的比都等于相似比.(相似形中的對應線段).1.相等,
2025-11-15 13:48
【總結】相似三角形的應用知識回顧問題探究課堂小結隨堂檢測:(1)定義法:三個對應角相等,三條對應邊成比例的兩個三角形相似.(2)平行法:平行于三角形一邊的直線和其它兩邊(戒兩邊的延長線)相交,所構成的三角形不原三角形相似;(3)判定定理1(邊邊邊):三邊對應成比例,兩三角形相似;
2025-08-05 01:37
【總結】(1)撮鎮(zhèn)中學劉老師如圖23.—16,△ABC與△A′B′C′相似,記作“△ABC∽△A′B′C′”,讀作“△ABC相似于△A′B′C′”ABCA′B′C′''''''ACCACBBCBAAB??∠A=∠
2025-11-12 03:06
【總結】宇軒圖書下一頁上一頁末頁目錄首頁考點知識精講宇軒圖書下一頁上一頁末頁目錄首頁考點訓練中考典例精析舉一反三考點知識精講宇軒圖書下一頁上一
2025-05-01 22:19
【總結】《相似三角形的應用》教案 課題 相似三角形的應用 總課時 2 本節(jié)課時 1 課型 新授課 ...
2025-04-03 05:08
【總結】專題訓練(八)相似三角形性質的運用1.已知△ABC∽△DEF,若△ABC與△DEF的相似比為3∶4,則△ABC與△DEF的面積之比為()A.4∶3B.3∶4C.16∶9D.9∶162.如圖,AB∥CD,AOOD=2
2025-11-15 13:00
【總結】§(1)連江縣東岱中學莊燕貞,鐵道口的欄桿短臂長1m,長臂長16m,當短臂端點下降,長臂端點升高m。8給我一個支點我可以撬起整個地球!阿基米德:OBDCA┏┛(第1題)1m16m?2.(深圳市中考題)小明在打網(wǎng)球時,使
2025-09-20 19:13
【總結】2016專題:《全等三角形證明》1.已知:D是AB中點,∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點,求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
2025-03-24 07:41
【總結】相似三角形復習(一)給你一個銳角三角形ABC和一條直線MN;問題你能用直線MN去截三角形ABC,使截得的三角形與原三角形相似嗎?相似三角形DE∥BC⊿ADE∽⊿ABCABAEACAD?∠DAE=∠CAB⊿ADE∽⊿ABC基本圖形判定方法∠AE
【總結】復習課一、復習:1、相似三角形的定義是什么?答:對應角相等,對應邊成比例的兩個三角形叫做相似三角形.2、判定兩個三角形相似有哪些方法?答:A、用定義;B、用預備定理;C、用判定定理1、2、3.D、直角三角形相似的判定定理3、相似三角形有
2025-11-15 14:13
【總結】ABCDEABC21OCBADOCDABABCDE△ABC與△DEF是相似三角形的是()A.B.∠B=∠E,C.∠C=∠F,D.∠C=∠F,∠A=∠DA
2025-11-20 10:09
【總結】神河中學:陳波學習的目標?(1)通過復習,梳理本章知識,構建知識網(wǎng)絡.?(2)通過具體實例認識圖形的相似,探索相似圖形的性質,知道相似多邊形的對應角相等,對應邊成比例,面積的比等于對應邊的比的平方。?(3)了解兩個三角形相似的概念,探索兩個三角形相似的條件。?(4)了解圖形的位似,能
2025-11-15 17:38