【總結(jié)】二次函數(shù)y=ax2+bx+c圖象和性質(zhì)(4)xyoy=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移在上述移動(dòng)中圖象的開口方向、形狀、頂點(diǎn)坐標(biāo)、對(duì)稱軸,哪些有變化?哪些沒有變化?有變化的:拋
2024-11-20 23:47
【總結(jié)】城西中學(xué)課堂教學(xué)改革講學(xué)稿()課題:二次函數(shù)的圖象與性質(zhì)(2)年級(jí):九(下)主備人:徐逢春審核:九年級(jí)數(shù)學(xué)組班次:學(xué)生姓名:教學(xué)目標(biāo):會(huì)畫出
2024-11-19 22:12
【總結(jié)】濟(jì)學(xué)教育 初四?上冊(cè)?第二單元?二次函數(shù)-第二課時(shí)二次函數(shù)概念及圖象性質(zhì)知識(shí)點(diǎn)一二次函數(shù)的概念一、二次函數(shù)的定義1.一般地,形如(為常數(shù),)的函數(shù)稱為的二次函數(shù),其中為自變量,為因變量,分別為二次函數(shù)的二次項(xiàng)、一次項(xiàng)和常數(shù)項(xiàng)系數(shù).2.任何二次函數(shù)都可以整理成(為常數(shù)
2025-04-04 04:24
【總結(jié)】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。【說明】這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).二、二次函數(shù)的基本形式1
2025-03-24 06:26
【總結(jié)】二次函數(shù)專題訓(xùn)練(一)1、選擇題(每題5分,共50分),屬于二次函數(shù)的是(x為自變量)( ) A. B. C. D.2.函數(shù)y=x2-2x+3的圖象的頂點(diǎn)坐標(biāo)是( ) A.(1,-4) B.(-1,2) C.(1,2) D.(0,3)3.拋物線y=2(x-3)2的頂點(diǎn)在( ) A.第一象限 B.第二
2025-03-24 06:25
【總結(jié)】課題二次函數(shù)的圖像和性質(zhì)教學(xué)內(nèi)容一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二
2025-07-26 04:32
【總結(jié)】二次函數(shù)的圖象和性質(zhì)1、小李從如圖所示的二次函數(shù)的圖象中,觀察得出了下面四條信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0.你認(rèn)為其中錯(cuò)誤的有()yxO(第4題)A.2個(gè) B.3個(gè) C.4個(gè) D.1個(gè)第1題(-1,2)和點(diǎn)N(
【總結(jié)】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):a的絕對(duì)值越大,拋物線的開口越小。的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減??;時(shí),有最小值.向下軸時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值.2.的性質(zhì):上加
2025-06-23 13:54
【總結(jié)】二次函數(shù)培優(yōu)專題一(圖像和性質(zhì))姓名:一:填空題:1.若y=(2-m)是二次函數(shù),且開口向上,則m的值為__________.2.拋物線y=x2+8x-4與直線x=4的交點(diǎn)坐標(biāo)是__________.3.若拋物線y=(k+2)x2+(k-2)x+(k2+k-2)經(jīng)過原點(diǎn),則k=________.4.已知點(diǎn)P(a,m)和Q(b,m)是拋物線y
【總結(jié)】二次函數(shù)圖象專題訓(xùn)練1.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論①a、b異號(hào);②當(dāng)x=1和x=3時(shí),函數(shù)值相等;③4a+b=0,④當(dāng)y=4時(shí),x的取值只能為0.結(jié)論正確的個(gè)數(shù)有()個(gè)A.1 B.2 C.3 ?。模?yxO2、已知二次函數(shù)()的圖象如圖所示,有下列結(jié)論:①;②;③;④.其中,正
【總結(jié)】專題四二次函數(shù)的圖像與性質(zhì)(一)【知識(shí)梳理】1.一般地,形如_______的函數(shù)叫做二次函數(shù),當(dāng)a_______,b________時(shí),是一次函數(shù).2.二次函數(shù)y=ax2+bx+c的圖象是_______,對(duì)稱軸是_______,頂點(diǎn)坐標(biāo)是_______.3.拋物線的開口方向由a確定,當(dāng)a0時(shí),開口_______;當(dāng)a0時(shí),開口_______;越
2025-03-24 05:53
【總結(jié)】二次函數(shù)y=ax2的圖象和性質(zhì)xy一.平面直角坐標(biāo)系:1.有關(guān)概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內(nèi)點(diǎn)的坐標(biāo):3.坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)是:一一對(duì)應(yīng).坐標(biāo)平面內(nèi)的任意一點(diǎn)M,都有
2024-11-21 23:43
【總結(jié)】學(xué)習(xí)目標(biāo):1、能建立二次函數(shù)的模型解決實(shí)際問題2、會(huì)利用二次函數(shù)的知識(shí)求出實(shí)際問題中的最值問題課前預(yù)習(xí):任務(wù)一:知識(shí)鞏固1、二次函數(shù)2(1)2yx???最小值是().A.2B.1C.-3D.232、已知二次函數(shù)822??
2024-11-21 02:31
【總結(jié)】的圖象與性質(zhì)h)-a(xy2?y=ax2+ka0a0圖象開口對(duì)稱性頂點(diǎn)增減性回顧:二次函數(shù)y=ax2+k的性質(zhì)開口向上開口向下|a|越大,開口越小關(guān)于y軸對(duì)稱頂點(diǎn)是最低點(diǎn)頂點(diǎn)是最高點(diǎn)當(dāng)x0時(shí),y隨x的增大而減小
2024-11-22 02:30
【總結(jié)】4-22246-4810-2y=x2+1y=x2-1y=ax2(a≠0)a0a0圖象開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸增減性最值xyOyxO向上向下(0,0)(0,0)y軸