【總結(jié)】人教B版數(shù)學(xué)必修2:平面與平面平行的判定與性質(zhì)同步練習(xí)一、選擇題1.與兩個相交平面的交線平行的直線和這兩個平面的位置關(guān)系是().B.都相交...2.如果兩個平面分別經(jīng)過兩條平行線中的一條,那么這兩個平面(
2024-11-27 23:55
【總結(jié)】函數(shù)的概念班級:__________姓名:__________設(shè)計人__________日期__________課前預(yù)習(xí)·預(yù)習(xí)案【溫馨寄語】假如你曾有過虛度的時光,請不要以嘆息作為補償;明天的路途畢竟長于逝去的歲月??爝~步,前面相迎的是幸福的曙光!【學(xué)習(xí)目標(biāo)】1.通過實例,體會函數(shù)是描繪變量之間對應(yīng)關(guān)系的重要數(shù)學(xué)模型
2024-11-28 00:25
【總結(jié)】誘導(dǎo)公式(二)崔文一、學(xué)習(xí)目標(biāo)1.掌握誘導(dǎo)公式四、五的推導(dǎo),并能應(yīng)用解決簡單的求值、化簡與證明問題.2.對誘導(dǎo)公式一至五,能作綜合歸納,體會出五組公式的共性與個性,培養(yǎng)由特殊到一般的數(shù)學(xué)推理意識和能力.3.繼續(xù)體會知識的“發(fā)生”、“發(fā)現(xiàn)”過程,培養(yǎng)研究問題、發(fā)現(xiàn)問題、解決問題的能力.二、學(xué)習(xí)指導(dǎo)五組誘導(dǎo)公式可以概括為一
2024-11-18 16:46
【總結(jié)】正弦函數(shù)的圖象與性質(zhì)(三)一.學(xué)習(xí)要點:正弦函數(shù)的性質(zhì)之周期性二.學(xué)習(xí)過程:復(fù)習(xí)提問1.正弦函數(shù)的圖象及其特征;2。誘導(dǎo)公式一新課學(xué)習(xí):一、周期函數(shù):一般地,對于函數(shù))(xf,如果存在一個非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個值時,都有)()(xfTxf??,那么函數(shù))(xf就叫做周期函數(shù)
2024-11-27 23:50
【總結(jié)】空間中的垂直關(guān)系(1)——直線與平面垂直自主學(xué)習(xí)學(xué)習(xí)目標(biāo)1.掌握直線與平面垂直的定義.2.掌握直線與平面、平面與平面垂直的判定定理及性質(zhì)定理,并能靈活應(yīng)用定理證明有關(guān)問題.自學(xué)導(dǎo)引1.如果直線l與平面α內(nèi)的________________________,我們就說直線l與平面α互相垂直,記作___
【總結(jié)】正弦函數(shù)的圖象與性質(zhì)(一)一.學(xué)習(xí)要點:正弦函數(shù)的圖象和性質(zhì)二.學(xué)習(xí)過程:復(fù)習(xí):三角函數(shù)線的概念及作法:設(shè)任意角α的終邊與單位圓相交于點P(x,y),過P作x軸的垂線,垂足為M,則有向線段MP叫做角α的正弦線,有向線段OM叫做角α的余弦線.新課學(xué)習(xí):1.用單位圓中的正弦線作正弦函數(shù)的圖
【總結(jié)】正弦函數(shù)的圖象與性質(zhì)(五)一.學(xué)習(xí)要點:正弦型函數(shù)的圖象、圖象變換二.學(xué)習(xí)過程:正弦型函數(shù)形如??sinyAx????(其中,,A??都是常數(shù))的函數(shù),叫做正弦型函數(shù),其定義域是R.例1作函數(shù)2sinyx?及1sin2yx?的簡圖.規(guī)律探索:1.函數(shù)
2024-11-18 16:45
【總結(jié)】正弦函數(shù)的圖象與性質(zhì)(四)一.學(xué)習(xí)要點:正弦函數(shù)的性質(zhì)之奇偶性、單調(diào)性二.學(xué)習(xí)過程:復(fù)習(xí)1.正弦函數(shù)的圖象;2.正弦函數(shù)的周期性;3.正弦函數(shù)的定義域、值域.新課學(xué)習(xí):1.奇偶性由??sinsinxx???知:正弦函數(shù)sinyx?是,正弦曲線關(guān)于原點對稱.正弦
【總結(jié)】人教B版數(shù)學(xué)必修2:平面與平面垂直的判定、直線與平面垂直的性質(zhì)一、選擇題1.已知laa??,?,則l與?的位置關(guān)系是(D)A.l//?B.??lC.??lD.l與?不相
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(2)新授課學(xué)習(xí)目標(biāo)1、借助正弦函數(shù)的圖像,說出正弦函數(shù)的性質(zhì);2、能利用正弦函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;
2024-11-27 23:47
【總結(jié)】2020年高中數(shù)學(xué)映射與函數(shù)學(xué)案新人教B版必修1一、三維目標(biāo):,表示方法及一一映射的概念;,區(qū)別映射與函數(shù);二、學(xué)習(xí)重、難點:重點:,表示方法,映射與函數(shù)區(qū)別;難點:映射的概念,映射與函數(shù)區(qū)別;
2024-11-19 23:23
【總結(jié)】2020年高中數(shù)學(xué)冪函數(shù)學(xué)案新人教B版必修1一、三維目標(biāo):1.理解冪函數(shù)的概念,會畫函數(shù)xy?,2xy?,3xy?,1??xy,21xy?的圖象.2.了解冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì),并能進行簡單的應(yīng)用.3.滲透辨證唯物主義觀點和方法論,培養(yǎng)學(xué)生運用具體問題具體分析的方法分析問題、
2024-11-19 23:24
【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學(xué)習(xí)過程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是
2024-11-27 23:46
【總結(jié)】2.1.1向量的概念一.學(xué)習(xí)要點:向量的有關(guān)概念二.學(xué)習(xí)過程:一、復(fù)習(xí):在現(xiàn)實生活中,我們會遇到很多量,其中一些量在取定單位后用一個實數(shù)就可以表示出來,如長度、質(zhì)量等.還有一些量,如我們在物理中所學(xué)習(xí)的位移,是一個既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學(xué)習(xí)::
【總結(jié)】2.1.3向量的減法一.學(xué)習(xí)要點:向量的減法二.學(xué)習(xí)過程:一、復(fù)習(xí):向量加法的法則:二、新課學(xué)習(xí):1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)