【總結】y=ax2+bx+c想一想函數(shù)y=ax2+bx+c的圖象?二次函數(shù)y=3(x-1)2+2的圖象是什么形狀?它與我們已經作過的二次函數(shù)的圖象有什么關系??在同一坐標系中作出二次函數(shù)y=3x2和y=3(x-1)2的圖象。比較二次函數(shù)y=3x2和y=3(x-1)2的圖象。?⑴完成下表,并比較3x2和3(x-
2024-11-18 21:18
【總結】初中數(shù)學資源網初中數(shù)學資源網拋物線y=x2y=-x2頂點坐標對稱軸位置開口方向增減性最值(0,0)(0,0)y軸y軸在x軸的上方(除頂點外)在x軸的下方(除頂點外)向上向下當x=0時,最小值為0當x=0時,最大值為0二次函數(shù)y=x2
2024-11-06 14:38
【總結】義務教育教科書(北師)九年級數(shù)學下冊第二章二次函數(shù)頂點式,對稱軸和頂點坐標公式:2、利潤=售價-進價.y=ax2+bx+c(a≠0)的性質??????????abacab44,22.44222abacabxay??????????總
2024-11-21 04:15
【總結】2.二次函數(shù)y=ax2+bx+c的圖象是一條,它的對稱軸是,頂點坐標是.當a0時,拋物線開口向,有最點,函數(shù)有最值,是;當a0時,拋物線開口向
2024-11-17 22:41
【總結】一次函數(shù)y=kx+b的性質學習目標:[1]熟練的掌握一次函數(shù)有關性質;[2]培養(yǎng)學生數(shù)形結合的意識和能力。合作探究-1-212345-3-4-512345-16?(0,6)(-3,0)???(1,-1)y=2x+6y=-x6?(1,5)
2024-11-07 03:04
【總結】實例分析?1.集合A={全班同學},集合B=(全班同學的姓},對應關系是:集合A中的每一個同學在集合B中都有一個屬于自己的姓.?2.集合A={中國,美國,英國,日本},B={北京,東京,華盛頓,倫敦},對應關系是:對于集合A中的每一個國家,在集合B中都有一個首都與它對應.?3.設集合A={1,-3,2,3,-1,
2024-11-18 13:33
【總結】二次函數(shù)的圖象與性質(1)c是常數(shù),a≠0)1.一般地,形如2.我們學習過哪些函數(shù)?y=ax2+bx+c(a、b、的函數(shù)叫做x的二次函數(shù).y=ax2+bx+c(a≠0)二次函數(shù)y=kx+b(k≠0)y=kx(k≠0)一次函數(shù)變
2024-12-07 21:21
【總結】二次函數(shù)y=a(x–h)2的圖象和性質.當h0時,向右平移當h0時,向左平移y=ax2y=a(x–h)2y=-x2的圖象得到y(tǒng)=-x2-3的圖象。并說明后者圖象的頂點,對稱軸,增減性。y=2x2的圖象得到y(tǒng)=2(x-3)2的圖象。并說明后者圖象的頂點,對稱軸,增減性。Oxy12
2024-11-30 02:42
【總結】作函數(shù)的圖象的常用方法1.描點作圖法;2.變換作圖法.畫出下列函數(shù)的圖象,并(1)y=x2(2)y=x2+1(3)y=x2-1說明它們的關系:基礎練習y=x2y=x2y=x2+1y=x2y=x2+1y=x2-1函數(shù)y=f(x)+k與函數(shù)y
2024-11-17 17:39
【總結】簡單的冪函數(shù)廣東仲元中學如果一個函數(shù),底數(shù)是自變量x,指數(shù)是常量,y=x,(y=x-1),y=x2??xy?xy1?這樣的函數(shù)稱為冪函數(shù).即冪函數(shù)的圖像y=xy=x2y=x-1y=x321xy?圖
2024-11-17 19:18
【總結】1.已知函數(shù)f(x)=2x-3,x∈{0,1,2,3,5},則f(x)的值域是:{-3,-1,1,3,7}2.函數(shù)y=x2+4x+6的值域是:[2,+∞)1.求下列函數(shù)的值域:①y=4x-5,x∈(-1,2]③y=
2024-11-18 00:51
【總結】北師大版九年級下冊數(shù)學、對稱軸和頂點坐標.(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?情境導入1.(1)開口:向上,對稱軸:直線x=3,頂點坐標(3,-5)(2)開口:向下,對稱軸:直線x=-1,頂點坐標(-1,0)(3)開口:向上,對稱軸:
2025-06-17 23:45
【總結】北師大版九年級下冊數(shù)學的圖象的頂點坐標是;開口方向是;最值是.y=-2x2+3的圖象可由函數(shù)的圖象向平移個單位得到.y=-3x2的圖象向下平移2個單位可得
2025-06-17 23:51
【總結】北師大版九年級下冊數(shù)學一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).(1)列表.(3)連線.(2)描點.?情境導入本節(jié)目標y=x2的圖象的作法和性質的過程,獲得利用圖象研究函數(shù)性質的經驗.y=x2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)
2025-06-17 23:49
【總結】北師大版九年級下冊數(shù)學函數(shù)y=x2y=-x2函數(shù)y=x2和y=-x2的圖象x24-2y=x2y=-x2圖象形狀開口方向對稱軸頂點坐標拋物線拋物線向上向下y軸y軸(O,0)
2025-06-17 23:42