【總結】三角形的內(nèi)切圓湘教版九年級下冊1、確定圓的條件是什么?(1).圓心與半徑2、敘述角平線的性質定理與判定定理。性質:角平線上的點到這個角的兩邊的距離相等。判定:到這個角的兩邊距離相等的點在這個角的平分線上。(2).不在同一直線上的三點(1)△ABC是圓O的內(nèi)接三角形;(2)圓O是△ABC的外接圓(3)圓
2025-07-25 14:49
【總結】相似三角形一、填空題(每空3分,共30分)1.若43??bba,則ba=_________2.15,15??的比例中項是____________3.若兩個相似三角形的周長之比為2:3,較小三角形的面積為82cm,則較大三角形面積
2024-12-05 16:15
【總結】數(shù)學來源于生活,應用于生活。她會使你聰明,使你陶醉,使你成功。同學們:讓數(shù)學成為我們的好朋友吧!李明在一家木料廠上班,工作之余想對廠里的三角形廢料進行加工:要在三角形木料上裁下一塊圓形用料,且使圓的面積最大,他就找我這個數(shù)學老師幫忙,同學們,你能幫他確定一下嗎?1.確定圓的條件是什么?1)圓心與半徑
2024-12-01 00:45
【總結】三角形的內(nèi)切圓教學目的:1.使學生掌握三角形的內(nèi)切圓的作法.2.使學生掌握三角形內(nèi)心的定義和性質.教學的重點和難點:三角形的內(nèi)切圓的作法和三角形的內(nèi)心的應用即是重點,又是難點.教學過程:一、復習與提問(學生回答)角的平分線的性質定理和判定定理二、講授新課
2024-11-18 16:03
【總結】三角形的內(nèi)切圓同步練習◆基礎訓練1.如圖1,⊙O內(nèi)切于△ABC,切點為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°
2024-11-28 12:53
【總結】三角形的內(nèi)切圓展示課3種位置關系::(1)切線的判定(判定定理).經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.(2)切線的性質(定理):圓的切線垂直于過切點的半徑.(3)切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角.3.主要輔助線:作過切點的半徑
2025-04-30 18:20
【總結】一、復習提問:敘述角平分線的性質定理和判定定理在角平分線上的點到這個角的兩邊的距離相等到一個角的兩邊的距離相等的點,在這個角的平分線上提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓,使它和已知三角形的各邊都相切已知:△ABC求作:和△A
2024-12-08 01:56
【總結】 九年級下冊《三角形的內(nèi)切圓》說課稿 一、教材分析 1、教材的地位與作用 本節(jié)課是在學生已經(jīng)學習了切線的判定與性質的基礎上,通過求作三角形內(nèi)最大圓的問題引出三角形的內(nèi)切圓的概念。學生通...
2025-04-03 05:12
【總結】初中數(shù)學資源網(wǎng)切線長與三角形的內(nèi)切圓初中數(shù)學資源網(wǎng)?⊙O上有一點A,你能過點A點作出⊙O的切線嗎?畫一畫●O●A?⊙O外有一點P,你還能過點P作出⊙O的切線嗎?●O●P初中數(shù)學資源網(wǎng)。PA
2024-10-19 11:57
【總結】例:如圖為△ABC的內(nèi)切圓,點D,E分別為邊AB,AC上的點,且DE為⊙I的切線,若△ABC的周長為21,BC邊的長為6,則△ADE的周長為( B?。.15B.9C.D.7如圖,在△ABC中,AB=10,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點D是斜邊AB的中點,則tan∠ODA= 2?。鐖D,O是△ABC的內(nèi)心,過點O作
2025-07-25 00:01
【總結】一、教學目的和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形的內(nèi)心概念,掌握三角形內(nèi)切圓的作法。。二、教學重點、難點重點:三角形內(nèi)切圓的作法、三角形的內(nèi)心與性質。難點:三角形與圓的位置關系中的“內(nèi)”與“外”、“接”與“切”四個概念的理解和運用。三、教學過程復習提問的條件是什么?、
2024-12-01 04:14
2024-11-30 06:43
【總結】三角形外接圓半徑的求法及應用方法一:R=ab/(2h)三角形外接圓的直徑等于兩邊的乘積除以第三邊上的高所得的商。AD是△ABC的高,AE是△ABC的外接圓直徑.求證AB·AC=AE·AD.證:連接AO并延長交圓于點E,連接BE,則∠ABE=90°.∵∠E=∠C,∠ABE=∠ADC=90°
2025-08-05 00:14
【總結】1.1認識三角形(一)同步練習一、基礎訓練1.關于下列說法中,錯誤的是()A.△ABC的三個頂點分別為A、B、CB.△ABC的三個內(nèi)角分別為∠A、∠B、∠CC.△ABC的三條邊分別為AB、BC、ACD.AB+BCAC2.頂點是A、B、E的三角形記作3.如圖點P
2024-12-05 16:21
【總結】全等三角形同步練習【知識提要】1.會說出怎樣的兩個圖形是全等圖形,并會用符號語言表示兩個三角形全等2.知道全等三角形的有關概念,會在全等三角形中正確找出對應頂點、對應邊、對應角.3.會說出對應邊、對應角相等的性質.【學法指導】1.兩個三角形的全等是指兩個圖形之間的一種對應
2024-11-15 19:40