【總結(jié)】(1)求函數(shù)f(x)=2的導(dǎo)數(shù);一、復(fù)習(xí)引入xyo022)()(??????xfxxfy??解:根據(jù)導(dǎo)數(shù)定義,.00limlim2)(00''???????????xxxyxf(2)求函數(shù)f(x)=0的導(dǎo)數(shù);(3)求函數(shù)f(x)=-2的導(dǎo)數(shù).00
2024-11-11 02:52
【總結(jié)】11(3)解:212sec2yxxx????y=(1sin)sin(cos)cosxxxxx????sincoscos2xxxx???3(3)解一:??y=sinsincosxxxx???3(3)解二:22si
2024-08-02 06:07
【總結(jié)】?函數(shù)的和、差、積、商的導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
2024-11-17 20:20
【總結(jié)】§利用導(dǎo)數(shù)研究函數(shù)2022/11/19一、單調(diào)性則可導(dǎo)在,),(],,[babaCf?).,(),0(0)()(],[baxxfbaf?????減上遞增在證明:)(必要性?,?f?,0)()(:???hxfhxf總有).,(,0)(baxxf????,),(),,(hbahxba
2025-01-14 03:06
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-2《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-復(fù)合函數(shù)的導(dǎo)數(shù)》教學(xué)目標(biāo)?掌握復(fù)合函數(shù)的求導(dǎo)?教學(xué)重點(diǎn):掌握復(fù)合函數(shù)的求導(dǎo)?教學(xué)難點(diǎn):復(fù)合函數(shù)的分解,求復(fù)合函數(shù)的導(dǎo)數(shù)1).求函數(shù)y=(3x-2)2的導(dǎo)數(shù)2).又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是y’=-
2024-11-09 08:10
2024-11-12 18:20
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件11《函數(shù)的圖象》要點(diǎn)183。考點(diǎn)在平面直角坐標(biāo)系中,以函數(shù)y=f(x)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)(x,y)的集合,就是函數(shù)y=f(x)的圖象.圖象上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,滿足y=f(x)的每一組對(duì)應(yīng)
2024-08-03 15:34
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件13《函數(shù)的最值》知識(shí)網(wǎng)絡(luò)最值求解方法最值問題常用解法最值綜合問題最值應(yīng)用問題“恒成立”問題“存在”問題:配方法,判別式法,代換法,不等式法,單調(diào)性法,數(shù)形結(jié)合法,三角函數(shù)有界法,反函數(shù)法。復(fù)習(xí)導(dǎo)引,
2024-11-11 02:54
【總結(jié)】函數(shù)的綜合問題高三備課組一.函數(shù)綜合問題1.函數(shù)本身內(nèi)部的綜合,包括概念、性質(zhì)及幾種基本初等函數(shù)的綜合問題2.函數(shù)與幾何的綜合問題3.函數(shù)與方程、不等式的綜合問題4.函數(shù)與數(shù)列、三角的綜合問題5.函數(shù)實(shí)際應(yīng)用的綜合問題變式一:已知奇函數(shù)滿足的值為
2024-11-10 00:28
【總結(jié)】高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件11《函數(shù)的圖象》要點(diǎn)·考點(diǎn)在平面直角坐標(biāo)系中,以函數(shù)y=f(x)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)(x,y)的集合,就是函數(shù)y=f(x)的圖象.圖象上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,滿足y=f(x)的每一組對(duì)應(yīng)值x
2024-11-10 00:29
【總結(jié)】函數(shù)的圖象高三備課組一、作函數(shù)圖象的基本方法有兩種::1、先確定函數(shù)定義域,討論函數(shù)的性質(zhì)(奇偶性,單調(diào)性,周期性)2、列表(注意特殊點(diǎn),如:零點(diǎn),最大最小,與軸的交點(diǎn))3、描點(diǎn),連線如:作出函數(shù)的圖象.:利用基本初等函數(shù)變換作圖(以熟悉基本初等函數(shù)的圖象為前提).1、平移變換
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件16《函數(shù)的綜合問題》一.函數(shù)綜合問題1.函數(shù)本身內(nèi)部的綜合,包括概念、性質(zhì)及幾種基本初等函數(shù)的綜合問題2.函數(shù)與幾何的綜合問題3.函數(shù)與方程、不等式的綜合問題4.函數(shù)與數(shù)列、三角的綜合問題5.函數(shù)實(shí)際應(yīng)用的綜合問題變式一:已知奇
【總結(jié)】了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系/能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件/會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值/會(huì)求閉區(qū)間上函數(shù)的最大值、最小值/會(huì)利用導(dǎo)數(shù)解決某些實(shí)際問題導(dǎo)數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)y′
2024-09-29 15:55
【總結(jié)】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2024-11-21 01:21
【總結(jié)】一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實(shí)際背景(瞬時(shí)速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù),并能熟練應(yīng)用它們求有關(guān)導(dǎo)數(shù).二、重點(diǎn)解析
2024-11-11 02:10