【總結(jié)】本章優(yōu)化總結(jié)專題探究精講本章優(yōu)化總結(jié)知識(shí)體系網(wǎng)絡(luò)章末綜合檢測(cè)知識(shí)體系網(wǎng)絡(luò)專題探究精講空間向量與空間位置關(guān)系用向量方法證明平行與垂直問題的一般步驟是:(1)建立立體圖形與空間向量的關(guān)系,利用空間向量表示問題中所涉及到的點(diǎn)、線、面,把立體幾何問題轉(zhuǎn)化為空間向量問題.
2024-11-12 19:03
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件47《立體幾何-三垂線定理》【教學(xué)目標(biāo)】正確理解和熟練掌握三垂線定理及其逆定理,并能運(yùn)用它解決有關(guān)垂直問題【知識(shí)梳理】1.斜線長(zhǎng)定理從平面外一點(diǎn)向這個(gè)平面所引的垂線段和斜線段中,①射影相等的兩條斜線段相等,射影較長(zhǎng)的斜線段也較長(zhǎng);②相等的斜線段的射影相
2024-08-03 15:40
【總結(jié)】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個(gè)的向量,那么對(duì)于這一平面內(nèi)的任意向量a,一對(duì)實(shí)數(shù)λ1,λ2,使a=.其中
2024-11-12 16:44
【總結(jié)】平面向量基本定理復(fù)習(xí)回顧:1、兩個(gè)向量共線的充要條件:與非零向量共線的充要條件是,使得有且只有一個(gè)實(shí)數(shù)如果,是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù),,使得
2024-11-09 00:20
【總結(jié)】第六節(jié)空間向量知識(shí)提要1.空間向量的概念:在空間,我們把具有和的量叫做向量。2.空間向量的運(yùn)算。定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)合律:⑶數(shù)乘分配律:3.共線向量。(1)如果表示空間向量的有向線段所在的直線
2024-08-01 04:56
【總結(jié)】空間向量基本定理課程目標(biāo)學(xué)習(xí)脈絡(luò)1.了解空間向量基本定理及其意義,會(huì)在簡(jiǎn)單問題中選用空間三個(gè)不共面的向量作為基底表示其他向量.2.使學(xué)生體會(huì)從平面到空間的過程,進(jìn)一步培養(yǎng)學(xué)生對(duì)空間圖形的想象能力.空間向量基本定理(1)如果向量e1,e2,e3是空間三個(gè)不共面的向量,a是空間任一
2024-11-16 23:22
【總結(jié)】第三節(jié)空間圖形的基本關(guān)系與公理基礎(chǔ)梳理名稱圖形文字語言符號(hào)語言公理1如果一條直線上有兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi)公理2經(jīng)過________的三個(gè)點(diǎn)確定一個(gè)平面公理3若P∈α,P∈β,則α∩β=a,且______公理4平行于同一條直線的兩條直線互相平行若a∥b,b
2024-11-12 01:25
【總結(jié)】微積分基本定理變速直線運(yùn)動(dòng)中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運(yùn)動(dòng)中位移為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),求物體在這段時(shí)間內(nèi)所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2024-08-03 15:39
【總結(jié)】毛洪清一、直線的方向向量定義直線L上的向量以及與向量共線的向量叫直線L的方向向量.?例:直線L過點(diǎn)P(-2,3,1),Q(1,0,-1),則直線L的一個(gè)方向向量為______ee(3,-3,-2)答案:L二、平面的法向量定義如果表示非零向量的有向線段所在
2024-11-12 17:26
【總結(jié)】第2節(jié)平面向量基本定理及其坐標(biāo)表示(對(duì)應(yīng)學(xué)生用書第61~62頁)1.向量的夾角(1)定義:已知兩個(gè)非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時(shí),夾角θ
2024-11-12 01:35
【總結(jié)】第二節(jié)平面向量基本定理及坐標(biāo)表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進(jìn)行向量的線性運(yùn)算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
【總結(jié)】(2)共線向量的一個(gè)充要條件:aa????0時(shí),與同向;?a?a=0時(shí),?00??a(1)實(shí)數(shù)與向量的積:a?定理:向量與非零向量共線的充要條
2024-08-03 17:39
【總結(jié)】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】高三數(shù)學(xué)總復(fù)習(xí)實(shí)數(shù)與向量的積宜良二中陳東知識(shí)要點(diǎn)回顧實(shí)數(shù)與向量的積定義運(yùn)算律向量共線的充要條件平面向量基本定理注意:例題講解[分析]:(1)延伸·拓展OA
2024-11-12 01:26
【總結(jié)】課件設(shè)計(jì):北師大南山附校榮紅莉教材分析教法學(xué)法教學(xué)過程教學(xué)反饋重點(diǎn)難點(diǎn)教學(xué)目標(biāo)《平面向量坐標(biāo)運(yùn)算》教學(xué)說明教材的地位和作用本節(jié)內(nèi)容在教材中有著承上啟下的作用。向量用坐標(biāo)表示后,對(duì)立體幾何教材的改革也有著深遠(yuǎn)的意義,可使空間結(jié)構(gòu)系統(tǒng)
2024-11-10 07:56