【總結(jié)】§ 正弦定理、余弦定理應(yīng)用舉例在三角形的6個(gè)元素中要已知三個(gè)(除三角外)才能求解,常見(jiàn)類型及其解法如表所示.已知條件應(yīng)用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時(shí)只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-06-28 04:30
【總結(jié)】第八節(jié)正、余弦定理的應(yīng)用基礎(chǔ)梳理解三角形(1)解三角形:__________________________________________________________________________________________________________________________________________________.
2024-11-12 16:42
【總結(jié)】正弦定理和余弦定理:.(1)在我國(guó)古代就有嫦娥奔月的神話故事.明月高懸,我們仰望夜空,會(huì)有無(wú)限遐想,不禁會(huì)問(wèn),月亮離我們地球有多遠(yuǎn)呢?科學(xué)家們是怎樣測(cè)出來(lái)的呢?(2)設(shè)A,B兩點(diǎn)在河的兩岸,只給你米尺和量角設(shè)備,不過(guò)河你可以測(cè)出它們之間的距離嗎?
2025-01-19 15:31
【總結(jié)】例3AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測(cè)量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達(dá)的,所以不能直接測(cè)量出建筑物的高。由解直角三角形的知識(shí),只要能測(cè)出一點(diǎn)C到建筑物的頂部A的距離CA,并測(cè)出由點(diǎn)C觀察A的仰角,就可以計(jì)算出建筑物的高。所以應(yīng)該設(shè)法借助解三角形的知識(shí)測(cè)出CA的長(zhǎng)。)
2024-08-25 01:09
【總結(jié)】......正弦定理、余弦定理練習(xí)題年級(jí)__________班級(jí)_________學(xué)號(hào)_________姓名__________分?jǐn)?shù)____一、選擇題(共20題,題分合計(jì)100分)△ABC中,sinA
2025-06-28 05:22
【總結(jié)】【正弦定理、余弦定理模擬試題】一.選擇題:1.在中,,則A為()2.在()3.在中,,則A等于()4.在中,,則邊等于()5.以4、5、6為邊長(zhǎng)的三角形一定是()A.銳角三角形 B.直角三角形C.鈍角三角形 D.
2025-03-25 04:59
【總結(jié)】正弦定理與余弦定理1.已知△ABC中,a=4,,則B等于()A.30°B.30°或150°C.60°D.60°或120°2.已知銳角△ABC的面積為,BC=4,CA=3,則角C的大小為()A.75°B.60°C.
【總結(jié)】尋找最適合自己的學(xué)習(xí)方法正弦定理和余弦定理1.正弦定理:===2R,其中R是三角形外接圓的半徑.由正弦定理可以變形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_C;(3)sinA=,sinB=,sinC=等形式,解決不同的三角形問(wèn)題.2
2025-06-24 03:33
【總結(jié)】第一篇:例談?wù)叶ɡ怼⒂嘞叶ɡ淼膽?yīng)用 龍?jiān)雌诳W(wǎng)://. 例談?wù)叶ɡ?、余弦定理的?yīng)用 作者:姜如軍 來(lái)源:《理科考試研究·高中》2013年第08期 答:km/h,實(shí)際行駛方向與水流方向約成...
2024-10-03 18:48
【總結(jié)】正弦定理余弦定理復(fù)習(xí)題1基本運(yùn)算類1、中,則等于ABC?45,60,1,Ba????b2、在△ABC中,已知,B=,C=,則等于80753、已知中,分別是角的對(duì)邊,,則=cb、CBA、?60,3,2??Bb
【總結(jié)】第一篇:§正弦定理、余弦定理的應(yīng)用(教案) 響水二中高三數(shù)學(xué)(理)一輪復(fù)習(xí)教案第五編平面向量、解三角形主備人張靈芝總第25期 §正弦定理、余弦定理的應(yīng)用 基礎(chǔ)自測(cè) ,在A處測(cè)得同一半平面方向的...
2024-10-03 13:37
【總結(jié)】第一篇:《正弦定理和余弦定理》測(cè)試卷 《正弦定理和余弦定理》學(xué)習(xí)成果測(cè)評(píng) 基礎(chǔ)達(dá)標(biāo): △ABC中,a=18,b=24,∠A=45°,此三角形解的情況為() 2.在△ABC 中,若a=2,...
2024-10-03 14:27
【總結(jié)】第一篇: 教學(xué)設(shè)計(jì)示例(第一課時(shí)) 一、教學(xué)目標(biāo) 1.掌握正弦定理及其向量法推導(dǎo)過(guò)程; 2.掌握用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問(wèn)題. 二、教學(xué)重點(diǎn)正弦定理及其推導(dǎo)過(guò)程,正弦...
2024-10-06 04:13
【總結(jié)】溫馨提示:此題庫(kù)為Word版,請(qǐng)按住Ctrl,滑動(dòng)鼠標(biāo)滾軸,調(diào)節(jié)合適的觀看比例,關(guān)閉Word文檔返回原板塊??键c(diǎn)16正弦定理和余弦定理一、選擇題1.(2011·浙江高考文科·T5)在中,,則()(A)-(B)(C)-1(D)1【思路點(diǎn)撥】用正弦定理統(tǒng)一到角
2025-04-17 04:22
【總結(jié)】第一篇:正弦、余弦定理綜合應(yīng)用 班別第小組姓名學(xué)號(hào) 正、余弦定理的綜合應(yīng)用 一、知識(shí)要點(diǎn) (一)1.正弦定理: a sinA ()2.變形公式:(1)a=2RsinA,b=c= (2)...
2024-10-04 23:55