freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年高中新課標(biāo)理科數(shù)學(xué)所有知識點總結(jié)(編輯修改稿)

2025-06-26 18:07 本頁面
 

【文章內(nèi)容簡介】 ①一般地,設(shè)函數(shù)的定義域為,如果存在實數(shù)滿足:(1)對于任意的,都有; (2)存在,使得.那么,我們稱是函數(shù) 的最大值,記作.②一般地,設(shè)函數(shù)的定義域為,如果存在實數(shù)滿足:(1)對于任意的,都有;(2)存在,使得.那么,我們稱是函數(shù)的最小值,記作.【】奇偶性(4)函數(shù)的奇偶性①定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的奇偶性如果對于函數(shù)f(x)定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)叫做奇函數(shù).(1)利用定義(要先判斷定義域是否關(guān)于原點對稱)(2)利用圖象(圖象關(guān)于原點對稱)如果對于函數(shù)f(x)定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)叫做偶函數(shù).(1)利用定義(要先判斷定義域是否關(guān)于原點對稱)(2)利用圖象(圖象關(guān)于y軸對稱)②若函數(shù)為奇函數(shù),且在處有定義,則.③奇函數(shù)在軸兩側(cè)相對稱的區(qū)間增減性相同,偶函數(shù)在軸兩側(cè)相對稱的區(qū)間增減性相反.④在公共定義域內(nèi),兩個偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個偶函數(shù)與一個奇函數(shù)的積(或商)是奇函數(shù).〖補充知識〗函數(shù)的圖象(1)作圖利用描點法作圖:①確定函數(shù)的定義域; ②化解函數(shù)解析式;③討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性); ④畫出函數(shù)的圖象.利用基本函數(shù)圖象的變換作圖:要準(zhǔn)確記憶一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等各種基本初等函數(shù)的圖象.①平移變換②伸縮變換 ③對稱變換 (2)識圖對于給定函數(shù)的圖象,要能從圖象的左右、上下分別范圍、變化趨勢、對稱性等方面研究函數(shù)的定義域、值域、單調(diào)性、奇偶性,注意圖象與函數(shù)解析式中參數(shù)的關(guān)系.(3)用圖 函數(shù)圖象形象地顯示了函數(shù)的性質(zhì),為研究數(shù)量關(guān)系問題提供了“形”的直觀性,它是探求解題途徑,獲得問題結(jié)果的重要工具.要重視數(shù)形結(jié)合解題的思想方法.第二章 基本初等函數(shù)(Ⅰ)〖〗指數(shù)函數(shù)【】指數(shù)與指數(shù)冪的運算(1)根式的概念①如果,且,那么叫做的次方根.當(dāng)是奇數(shù)時,的次方根用符號表示;當(dāng)是偶數(shù)時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號表示;0的次方根是0;負(fù)數(shù)沒有次方根.②式子叫做根式,這里叫做根指數(shù),叫做被開方數(shù).當(dāng)為奇數(shù)時,為任意實數(shù);當(dāng)為偶數(shù)時,.③根式的性質(zhì):;當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時, .(2)分?jǐn)?shù)指數(shù)冪的概念①正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是:且.0的正分?jǐn)?shù)指數(shù)冪等于0.②正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是:且.0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義. 注意口訣:底數(shù)取倒數(shù),指數(shù)取相反數(shù).(3)分?jǐn)?shù)指數(shù)冪的運算性質(zhì)① ②③【】指數(shù)函數(shù)及其性質(zhì)(4)指數(shù)函數(shù)函數(shù)名稱指數(shù)函數(shù)定義0101函數(shù)且叫做指數(shù)函數(shù)圖象定義域值域過定點圖象過定點,即當(dāng)時,.奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對 圖象的影響在第一象限內(nèi),越大圖象越高;在第二象限內(nèi),越大圖象越低.〖〗對數(shù)函數(shù)【】對數(shù)與對數(shù)運算(1) 對數(shù)的定義 ①若,則叫做以為底的對數(shù),記作,其中叫做底數(shù),叫做真數(shù).②負(fù)數(shù)和零沒有對數(shù).③對數(shù)式與指數(shù)式的互化:.(2)幾個重要的對數(shù)恒等式,.(3)常用對數(shù)與自然對數(shù)常用對數(shù):,即;自然對數(shù):,即(其中…).(4)對數(shù)的運算性質(zhì) 如果,那么①加法: ②減法:③數(shù)乘: ④⑤ ⑥換底公式:【】對數(shù)函數(shù)及其性質(zhì)(5)對數(shù)函數(shù)函數(shù)名稱對數(shù)函數(shù)定義函數(shù)且叫做對數(shù)函數(shù)圖象0101定義域值域過定點圖象過定點,即當(dāng)時,.奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對 圖象的影響在第一象限內(nèi),越大圖象越靠低;在第四象限內(nèi),越大圖象越靠高.(6)反函數(shù)的概念設(shè)函數(shù)的定義域為,值域為,從式子中解出,得式子.如果對于在中的任何一個值,通過式子,在中都有唯一確定的值和它對應(yīng),那么式子表示是的函數(shù),函數(shù)叫做函數(shù)的反函數(shù),記作,習(xí)慣上改寫成.(7)反函數(shù)的求法①確定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式中反解出;③將改寫成,并注明反函數(shù)的定義域.(8)反函數(shù)的性質(zhì) ①原函數(shù)與反函數(shù)的圖象關(guān)于直線對稱.②函數(shù)的定義域、值域分別是其反函數(shù)的值域、定義域.③若在原函數(shù)的圖象上,則在反函數(shù)的圖象上.④一般地,函數(shù)要有反函數(shù)則它必須為單調(diào)函數(shù).〖〗冪函數(shù)(1)冪函數(shù)的定義 一般地,函數(shù)叫做冪函數(shù),其中為自變量,是常數(shù).(2)冪函數(shù)的圖象(3)冪函數(shù)的性質(zhì)①圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無圖象.冪函數(shù)是偶函數(shù)時,圖象分布在第一、二象限(圖象關(guān)于軸對稱);是奇函數(shù)時,圖象分布在第一、三象限(圖象關(guān)于原點對稱);是非奇非偶函數(shù)時,圖象只分布在第一象限. ②過定點:所有的冪函數(shù)在都有定義,并且圖象都通過點. ③單調(diào)性:如果,則冪函數(shù)的圖象過原點,并且在上為增函數(shù).如果,則冪函數(shù)的圖象在上為減函數(shù),在第一象限內(nèi),圖象無限接近軸與軸.④奇偶性:當(dāng)為奇數(shù)時,冪函數(shù)為奇函數(shù),當(dāng)為偶數(shù)時,冪函數(shù)為偶函數(shù).當(dāng)(其中互質(zhì),和),若為奇數(shù)為奇數(shù)時,則是奇函數(shù),若為奇數(shù)為偶數(shù)時,則是偶函數(shù),若為偶數(shù)為奇數(shù)時,則是非奇非偶函數(shù).⑤圖象特征:冪函數(shù),當(dāng)時,若,其圖象在直線下方,若,其圖象在直線上方,當(dāng)時,若,其圖象在直線上方,若,其圖象在直線下方.〖補充知識〗二次函數(shù)(1)二次函數(shù)解析式的三種形式①一般式:②頂點式:③兩根式:(2)求二次函數(shù)解析式的方法①已知三個點坐標(biāo)時,宜用一般式.②已知拋物線的頂點坐標(biāo)或與對稱軸有關(guān)或與最大(小)值有關(guān)時,常使用頂點式.③若已知拋物線與軸有兩個交點,且橫線坐標(biāo)已知時,選用兩根式求更方便.(3)二次函數(shù)圖象的性質(zhì)①二次函數(shù)的圖象是一條拋物線,對稱軸方程為頂點坐標(biāo)是.②當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增,當(dāng)時,;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減,當(dāng)時,.③二次函數(shù)當(dāng)時,圖象與軸有兩個交點.(4)一元二次方程根的分布一元二次方程根的分布是二次函數(shù)中的重要內(nèi)容,這部分知識在初中代數(shù)中雖有所涉及,但尚不夠系統(tǒng)和完整,且解決的方法偏重于二次方程根的判別式和根與系數(shù)關(guān)系定理(韋達定理)的運用,下面結(jié)合二次函數(shù)圖象的性質(zhì),系統(tǒng)地來分析一元二次方程實根的分布. 設(shè)一元二次方程的兩實根為,且.令,從以下四個方面來分析此類問題:①開口方向: ②對稱軸位置: ③判別式: ④端點函數(shù)值符號. ①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且僅有一個根x1(或x2)滿足k1<x1(或x2)<k2 f(k1)f(k2)0,并同時考慮f(k1)=0或f(k2)=0這兩種情況是否也符合 ⑥k1<x1<k2≤p1<x2<p2 此結(jié)論可直接由⑤推出. (5)二次函數(shù)在閉區(qū)間上的最值 設(shè)在區(qū)間上的最大值為,最小值為,令.(Ⅰ)當(dāng)時(開口向上)①若,則 ②若,則 ③若,則xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)①若,則 ②,則xy0aOabx2=pqf(p)f(q)(Ⅱ)當(dāng)時(開口向下)①若,則 ②若,則 ③若,則xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)①若,則 ②,則.xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)第三章 函數(shù)的應(yīng)用一、方程的根與函數(shù)的零點函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.函數(shù)零點的求法:求函數(shù)的零點: (代數(shù)法)求方程的實數(shù)根; (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.二次函數(shù)的零點:二次函數(shù).1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.高中數(shù)學(xué) 必修2知識點第一章 空間幾何體、錐、臺、球的結(jié)構(gòu)特征1 三視圖: 正視圖:從前往后 側(cè)視圖:從左往右 俯視圖:從上往下2 畫三視圖的原則: 長對齊、高對齊、寬相等3直觀圖:斜二測畫法4斜二測畫法的步驟:(1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;(2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;(3).畫法要寫好。5 用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖 空間幾何體的表面積與體積(一 )空間幾何體的表面積1棱柱、棱錐的表面積: 各個面面積之和2 圓柱的表面積 3 圓錐的表面積4 圓臺的表面積 5 球的表面積(二)空間幾何體的體積1柱體的體積 2錐體的體積 DCBAα3臺體的體積 4球體的體積 第二章 直線與平面的位置關(guān)系、直線、平面之間的位置關(guān)系1 平面含義:平面是無限延展的2 平面的畫法及表示(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。3 三個公理:(1)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)符號表示為LAαA∈LB∈L = L αA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)CBAα(2)公理2:過不在一條直線上的三點,有且只有一個平面。符號表示為:A、B、C三點不共線 = 有且只有一個平面α,使A∈α、B∈α、C∈α。公理2作用:確定一個平面的依據(jù)。(3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。PαLβ符號表示為:P∈α∩β =α∩β=L,且P∈L公理3作用:判定兩個平面是否相交的依據(jù) 空間中直線與直線之間的位置關(guān)系1 空間的兩條直線有如下三種關(guān)系:共面直線 相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點。2 公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設(shè)a、b、c是三條直線=a∥ca∥bc∥b強調(diào):公理4實質(zhì)上是說平行具有傳遞性,在平面、空間這個性質(zhì)都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。3 等角定理:空間中如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補4 注意點:① a39。與b39。所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為簡便,點O一般取在兩直線中的一條上;② 兩條異面直線所成的角θ∈(0, );③ 當(dāng)兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;④ 兩條直線互相垂直,有共面垂直與異面垂直兩種情形;⑤ 計算中,通常把兩條異面直線所成的角轉(zhuǎn)
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1