【總結】常見三角函數值sin30°=1/2sin45°=√2/2 sin60°=√3/2cos30°=√3/2 cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan
2025-07-23 20:29
【總結】三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A
2025-07-22 12:22
【總結】......三角函數公式大全兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinB
2025-08-03 07:34
【總結】.誘導公式目錄·誘導公式·誘導公式記憶口訣·同角三角函數基本關系·同角三角函數關系六角形記憶法·兩角和差公式·倍角公式·半角公式·萬能公式·萬能公式推導·三倍角公式·三倍角公式推導·三倍角公式聯想記憶·和差化積
2025-07-24 18:49
【總結】三角函數的圖象一、知識回顧(一):y=tanxy=cotx(二)三角函數圖象的作法:(利用三角函數線)2.描點法:五點作圖法(正、余弦曲線),三點二線作圖法(正、余切曲線).3.利用圖象變換作三角函數圖象.三角函數的圖象變換有振幅變換、周期變換和相位變換等,重點掌握函數y=Asin(ωx+φ)+B的作法.函數y=
2025-05-15 23:50
2025-06-24 15:01
【總結】誘導公式常用的誘導公式有以下幾組:公式一:設α為任意角,終邊相同的角的同一三角函數的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:sin(π+α)=-sinα
2025-05-16 05:13
【總結】三角函數公式三角函數是數學中屬于初等函數中的超越函數的函數。它們的本質是任何角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的。其定義域為整個實數域。另一種定義是在直角三角形中,但并不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。三角函數公式看似很多、很復雜,但只要掌握了三角函數的本質及內部規(guī)律,就會發(fā)現三角函數各個公式之間
2025-08-04 23:52
【總結】三角函數公式總結一、誘導公式口訣:(分子)奇變偶不變,符號看象限。1. sin(α+k·360)=sinα cos(α+k·360)=cosa tan(α+k·360)=tanα2. sin(180°+β)=-sinα cos(180°+β)=-cosa3. sin(-α)=-sina cos(-a
2025-06-25 02:44
【總結】三角函數公式總結一、誘導公式口訣:(分子)奇變偶不變,符號看象限。1. sin(α+k·360)=sinα cos(α+k·360)=cosa tan(α+k·360)=tanα2. sin(180°+β)=-sinα cos(180°+β)=-cosa3. sin(-α)=-sina cos(
2025-05-31 01:52
【總結】§誘導公式一.學習目標(一)、(二),理解和掌握公式的內涵及結構特征,會初步運用誘導公式求三角函數的值,并進行簡單三角函數式的化簡。(三)、(四),能運用公式進行三角函數的求值化簡。二.重點與難點重點:誘導公式的推到探究及應用。難點:發(fā)現終邊與角的終邊關于原點對稱的角與之間的數量關系。發(fā)現終邊與角的終邊關于對稱的角與之間的數量關系。三.知識鏈接?例如
2025-08-22 05:57
【總結】函數、三角函數、三角恒等變換重要公式1.=;=;2、當為奇數時,;當為偶數時,.3、⑴;?、?;4、運算性質:⑴;⑵;⑶.5、指數函數解析式:6、指數函數性質:圖象性質(1)定義域:R(2)值域:(0,+∞)(3)過定點(0,1),即x=0時,y=1(4)在R上是增函數(4)在R上是
2025-07-25 05:18
【總結】三角函數公式大全及推導過程一、任意角的三角函數在角的終邊上任取一點,記:,正弦:余弦:正切:二、同角三角函數的基本關系式商數關系:,平方關系:,三、誘導公式公式一:設α為任意角,終邊相同的角的同一三角函數的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα公
2025-07-24 07:31
【總結】三角函數公式大全一、定義銳角三角函數任意角三角函數圖形 直正弦(sin)余弦(cos)正切(tan或tg)余切(cot或ctg)正割(sec)余割(csc)二、函數關系倒數關系:??;??;?商數關系:
【總結】高中三角函數公式大全2009年07月12日星期日19:27三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=c
2025-07-24 08:24