freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

直線的傾斜角和斜率教學(xué)案(編輯修改稿)

2025-05-14 07:33 本頁面
 

【文章內(nèi)容簡介】 、已知直線的斜率為,且與軸的交點為,求直線的方程。 引入斜截式方程,讓學(xué)生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。 學(xué)生獨立求出直線的方程: (2) 再此基礎(chǔ)上,教師給出截距的概念,引導(dǎo)學(xué)生分析方程(2)由哪兩個條件確定,讓學(xué)生理解斜截式方程概念的內(nèi)涵。觀察方程,它的形式具有什么特點?深入理解和掌握斜截式方程的特點? 學(xué)生討論,教師及時給予評價。問 題設(shè)計意圖師生活動直線在軸上的截距是什么?使學(xué)生理解“截距”與“距離”兩個概念的區(qū)別。學(xué)生思考回答,教師評價。你如何從直線方程的角度認(rèn)識一次函數(shù)?一次函數(shù)中和的幾何意義是什么?你能說出一次函數(shù)圖象的特點嗎?體會直線的斜截式方程與一次函數(shù)的關(guān)系.學(xué)生思考、討論,教師評價、歸納概括。1例2的教學(xué)。 掌握從直線方程的角度判斷兩條直線相互平行,或相互垂直;進(jìn)一步理解斜截式方程中的幾何意義。 教師引導(dǎo)學(xué)生分析:用斜率判斷兩條直線平行、垂直結(jié)論。思考(1)時, 有何關(guān)系?(2)時,有何關(guān)系?在此由學(xué)生得出結(jié)論:且;1課堂練習(xí)第100頁練習(xí)第1,2,3,4題。鞏固本節(jié)課所學(xué)過的知識。學(xué)生獨立完成,教師檢查反饋。1小結(jié)使學(xué)生對本節(jié)課所學(xué)的知識有一個整體性的認(rèn)識,了解知識的來龍去脈。教師引導(dǎo)學(xué)生概括:(1)本節(jié)課我們學(xué)過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?1布置作業(yè):第106頁第1題的(1)、(2)、(3)和第5題鞏固深化學(xué)生課后獨立完成。 直線的兩點式方程一、教學(xué)目標(biāo)知識與技能(1)掌握直線方程的兩點的形式特點及適用范圍;(2)了解直線方程截距式的形式特點及適用范圍。過程與方法 讓學(xué)生在應(yīng)用舊知識的探究過程中獲得到新的結(jié)論,并通過新舊知識的比較、分析、應(yīng)用獲得新知識的特點。情態(tài)與價值觀(1)認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化;(2)培養(yǎng)學(xué)生用聯(lián)系的觀點看問題。二、教學(xué)重點、難點: 重點:直線方程兩點式。難點:兩點式推導(dǎo)過程的理解。三、教學(xué)設(shè)想問 題設(shè)計意圖師生活動利用點斜式解答如下問題:(1)已知直線經(jīng)過兩點,求直線的方程.(2)已知兩點其中,求通過這兩點的直線方程。遵循由淺及深,由特殊到一般的認(rèn)知規(guī)律。使學(xué)生在已有的知識基礎(chǔ)上獲得新結(jié)論,達(dá)到溫故知新的目的。 教師引導(dǎo)學(xué)生:根據(jù)已有的知識,要求直線方程,應(yīng)知道什么條件?能不能把問題轉(zhuǎn)化為已經(jīng)解決的問題呢?在此基礎(chǔ)上,學(xué)生根據(jù)已知兩點的坐標(biāo),先判斷是否存在斜率,然后求出直線的斜率,從而可求出直線方程:(1)(2)教師指出:當(dāng)時,方程可以寫成由于這個直線方程由兩點確定,所以我們把它叫直線的兩點式方程,簡稱兩點式(twopoint form).若點中有,或,此時這兩點的直線方程是什么?使學(xué)生懂得兩點式的適用范圍和當(dāng)已知的兩點不滿足兩點式的條件時它的方程形式。 教師引導(dǎo)學(xué)生通過畫圖、觀察和分析,發(fā)現(xiàn)當(dāng)時,直線與軸垂直,所以直線方程為:;當(dāng)時,直線與軸垂直,直線方程為:。問 題設(shè)計意圖師生活動例3 教學(xué) 已知直線與軸的交點為A,與軸的交點為B,其中,求直線的方程。使學(xué)生學(xué)會用兩點式求直線方程;理解截距式源于兩點式,是兩點式的特殊情形。教師引導(dǎo)學(xué)生分析題目中所給的條件有什么特點?可以用多少方法來求直線的方程?那種方法更為簡捷?然后由求出直線方程: 教師指出:的幾何意義和截距式方程的概念。例4教學(xué) 已知三角形的三個頂點A(5,0),B(3,3),C(0,2),求BC邊所在直線的方程,以及該邊上中線所在直線的方程。 讓學(xué)生學(xué)會根據(jù)題目中所給的條件,選擇恰當(dāng)?shù)闹本€方程解決問題。 教師給出中點坐標(biāo)公式,學(xué)生根據(jù)自己的理解,選擇恰當(dāng)方法求出邊BC所在的直線方程和該邊上中線所在直線方程。在此基礎(chǔ)上,學(xué)生交流各自的作法,并進(jìn)行比較。課堂練習(xí) 第102頁第3題。學(xué)生獨立完成,教師檢查、反饋。小結(jié)增強學(xué)生對直線方種四種形式(點斜式、斜截式、兩點式、截距式)互相之間的聯(lián)系的理解。教師提出:(1)到目前為止,我們所學(xué)過的直線方程的表達(dá)形式有多少種?它們之間有什么關(guān)系?(2)要求一條直線的方程,必須知道多少個條件?布置作業(yè)鞏固深化,培養(yǎng)學(xué)生的獨立解決問題的能力。學(xué)生課后完成 直線的一般式方程一、教學(xué)目標(biāo)知識與技能(1)明確直線方程一般式的形式特征;(2)會把直線方程的一般式化為斜截式,進(jìn)而求斜率和截距;(3)會把直線方程的點斜式、兩點式化為一般式。過程與方法 學(xué)會用分類討論的思想方法解決問題。情態(tài)與價值觀(1)認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化;(2)用聯(lián)系的觀點看問題。二、教學(xué)重點、難點:重點:直線方程的一般式。難點:對直線方程一般式的理解與應(yīng)用。三、教學(xué)設(shè)想問 題設(shè)計意圖師生活動(1)平面直角坐標(biāo)系中的每一條直線都可以用一個關(guān)于的二元一次方程表示嗎?(2)每一個關(guān)于的二元一次方程(A,B不同時為0)都表示一條直線嗎?使學(xué)生理解直線和二元一次方程的關(guān)系。 教師引導(dǎo)學(xué)生用分類討論的方法思考探究問題(1),即直線存在斜率和直線不存在斜率時求出的直線方程是否都為二元一次方程。對于問題(2),教師引導(dǎo)學(xué)生理解要判斷某一個方程是否表示一條直線,只需看這個方程是否可以轉(zhuǎn)化為直線方程的某種形式。為此要對B分類討論,即當(dāng)時和當(dāng)B=0時兩種情形進(jìn)行變形。然后由學(xué)生去變形判斷,得出結(jié)論: 關(guān)于的二元一次方程,它都表示一條直線。 教師概括指出:由于任何一條直線都可以用一個關(guān)于的二元一次方程表示;同時,任何一個關(guān)于的二元一次方程都表示一條直線。 我們把關(guān)于關(guān)于的二元一次方程(A,B不同時為0)叫做直線的一般式方程,簡稱一般式(general form).直線方程的一般式與其他幾種形式的直線方程相比,它有什么優(yōu)點?使學(xué)生理解直線方程的一般式的與其他形 學(xué)生通過對比、討論,發(fā)現(xiàn)直線方程的一般式與其他形式的直線方程的一個不同點是:問 題設(shè)計意圖師生活動式的不同點。直線的一般式方程能夠表示平面上的所有直線,而點斜式、斜截式、兩點式方程,都不能表示與軸垂直的直線。在方程中,A,B,C為何值時,方程表示的直線(1)平行于軸;(2)平行于軸;(3)與軸重合;(4)與重合。使學(xué)生理解二元一次方程的系數(shù)和常數(shù)項對直線的位置的影響。 教師引導(dǎo)學(xué)生回顧前面所學(xué)過的與軸平行和重合、與軸平行和重合的直線方程的形式。然后由學(xué)生自主探索得到問題的答案。例5的教學(xué) 已知直線經(jīng)過點A(6,4),斜率為,求直線的點斜式和一般式方程。 使學(xué)生體會把直線方程的點斜式轉(zhuǎn)化為一般式,把握直線方程一般式的特點。學(xué)生獨立完成。然后教師檢查、評價、反饋。指出:對于直線方程的一般式,一般作如下約定:一般按含項、含項、
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1