【總結(jié)】二次函數(shù)小結(jié)一、二次函數(shù)的定義一般地,如果y=ax2+bx+c(a、b、c是常數(shù),a≠0),那么y叫做x二次函數(shù)。注:二次函數(shù)y=ax2+bx+c的結(jié)構(gòu)特征:等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,的最高次數(shù)是2;二次項(xiàng)系數(shù)a≠0。二、二次函數(shù)的圖象及畫法1、二次函數(shù)y=ax2+bx+c(a≠0)的圖象是以為頂點(diǎn),以直線x
2024-08-13 10:28
【總結(jié)】二次函數(shù)應(yīng)用②1.心理學(xué)家發(fā)現(xiàn),學(xué)生對(duì)概念的接受能力y和提出概念所用的時(shí)間x(單位:分)之間大體滿足函數(shù)關(guān)系式:(0≤x≤30)。y的值越大,表示接受能力越強(qiáng)。試根據(jù)關(guān)系式回答:(1)若提出概念用10分鐘,學(xué)生的接受能力是多少?(2)概念提出多少時(shí)間時(shí)?學(xué)生的接受能力達(dá)到最強(qiáng)?2.某地要建造一個(gè)圓形噴水池,在水池中央垂直于水面安裝一個(gè)
2024-08-04 03:42
【總結(jié)】1、二次函數(shù)所描述的關(guān)系教學(xué)內(nèi)容:P34~P37教學(xué)目標(biāo):1)經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗(yàn)2)能夠表示簡單變量之間的二次函數(shù)關(guān)系3)能夠利用嘗試求值的方法解決實(shí)際問題,如猜測增種多少棵橙子樹可以使橙子的總產(chǎn)量最多的問題教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):表示簡單變量之間的二次函數(shù)關(guān)系
2024-12-03 05:02
【總結(jié)】第二章二次函數(shù)與命題一、基礎(chǔ)知識(shí)1.二次函數(shù):當(dāng)0時(shí),y=ax2+bx+c或f(x)=ax2+bx+c稱為關(guān)于x的二次函數(shù),其對(duì)稱軸為直線x=-,另外配方可得f(x)=a(x-x0)2+f(x0),其中x0=-,下同。2二次函數(shù)的性質(zhì):當(dāng)a0時(shí),f(x)的圖象開口向上,在區(qū)間(-∞,x0]上隨自變量x增大函數(shù)值減?。ê喎Q遞減),在[x0,-∞)上隨自變量增大函數(shù)
2025-06-08 00:21
【總結(jié)】思想方法選講之二分類討論與含參數(shù)的一元二次不等式基礎(chǔ)知識(shí)預(yù)備:解下列一元二次不等式(1)x2-6x+80(2)(x+5)(3-2x)≥6(3)1+2x+x2≤0(4)(5)(6)1+2x+x2≥0(7)(x2-x-6)(1—x2)≤0
2025-06-26 08:12
【總結(jié)】二次函數(shù)閩侯青圃中學(xué)陳克旗復(fù)習(xí)1、什么是函數(shù)?在某個(gè)變化過程中,有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)可取的值,都有唯一一個(gè)y值與它對(duì)應(yīng),那么y稱為x的函數(shù)。2、函數(shù)有哪些表示方法?解析法列表法圖象法3、一次函數(shù)形如y=kx+b(k、b為常
2024-07-27 06:34
【總結(jié)】二次函數(shù)與實(shí)際問題1、理論應(yīng)用(基本性質(zhì)的考查:解析式、圖象、性質(zhì)等)2、實(shí)際應(yīng)用(拱橋問題,求最值、最大利潤、最大面積等)類型一:最大面積問題例一:如圖在長200米,寬80米的矩形廣場內(nèi)修建等寬的十字形道路,綠地面積(㎡)與路寬(m)之間的關(guān)系?并求出綠地面積的最大值?變式練習(xí)1:如圖,用50m長的護(hù)欄全部用于建造一塊靠墻的長方形花園,寫
2024-08-13 23:53
【總結(jié)】二次函數(shù)經(jīng)典練習(xí)題總會(huì)一個(gè)小球由靜止開始在一個(gè)斜坡上向下滾動(dòng),通過儀器觀察得到小球滾動(dòng)的距離s(米)與時(shí)間t(秒)的數(shù)據(jù)如下表:時(shí)間t(秒)1234…距離s(米)281832…寫出用t表示s的函數(shù)關(guān)系式:1、下列函數(shù):①;②;③;④;⑤,其中是二次函數(shù)的是
2025-06-23 13:56
【總結(jié)】完美WORD格式資料中考二次函數(shù)壓軸題分類匯編1.極值問題=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣1,4),且與直線y=﹣x+1相交于A、B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(﹣3,0).(1)求二次函數(shù)的表達(dá)式;(2)點(diǎn)N是二次
2025-04-07 22:54
【總結(jié)】二次函數(shù)題型分析練習(xí)題型一:二次函數(shù)對(duì)稱軸及頂點(diǎn)坐標(biāo)的應(yīng)用1.(2015?蘭州)在下列二次函數(shù)中,其圖象對(duì)稱軸為x=﹣2的是( ?。〢. y=(x+2)2 B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)22.(2014?浙江)已知點(diǎn)A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)
2025-04-16 13:00
【總結(jié)】....(一)求線段最大值及根據(jù)面積求點(diǎn)坐標(biāo)1、(2013?重慶)如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5).(1)求直線BC與拋物線的解析式;(2)若點(diǎn)M是拋物線在x軸下方圖象上的一動(dòng)點(diǎn),過點(diǎn)M作MN
2025-03-24 06:13
【總結(jié)】二次函數(shù)題型分類總結(jié)題型1、二次函數(shù)的定義(考點(diǎn):二次函數(shù)的二次項(xiàng)系數(shù)不為0,且二次函數(shù)的表達(dá)式必須為整式)1、下列函數(shù)中,是二次函數(shù)的是.①y=x2-4x+1;②y=2x2; ③y=2x2+4x; ④y=-3x;⑤y=-2x-1; ⑥y=mx2+nx+p; ⑦y=錯(cuò)誤!未定義書簽。;
2025-03-25 07:29
【總結(jié)】1二次函數(shù)知識(shí)點(diǎn)總結(jié)及相關(guān)典型題目第一部分二次函數(shù)基礎(chǔ)知識(shí)?相關(guān)概念及定義?二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).?二次函數(shù)2yaxbx
2024-10-19 10:07
【總結(jié)】二次函數(shù)圖像平移、旋轉(zhuǎn)總歸納一、二次函數(shù)的圖象的平移,先作出二次函數(shù)y=2x2+1的圖象①向上平移3個(gè)單位,所得圖象的函數(shù)表達(dá)式是:y=2x2+4;②向下平移4個(gè)單位,所得圖象的函數(shù)表達(dá)式是:y=2x2-3;③向左平移5個(gè)單位,所得圖象的函數(shù)表達(dá)式是:y=2(x+5)2+1;④向右平移6個(gè)單位,所得圖象的函數(shù)表達(dá)式是:y=2(x-6)2+1.由此可以歸納二次函數(shù)y=ax2
2025-03-24 06:26
【總結(jié)】1第一部分二次函數(shù)基礎(chǔ)知識(shí)?相關(guān)概念及定義?二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).?二次函數(shù)2yaxbxc???的結(jié)構(gòu)特征:⑴等
2024-10-20 20:45