【總結(jié)】一元二次方程根與系數(shù)的關(guān)系授課人長沙市第一中學(xué)陳震題1口答1.下列方程的兩根和與兩根積各是多少?⑴.X2-3X+1=0⑵.3X2-2X=2⑶.2X2+3X=0⑷.3X2=1基本知識在使用根與系數(shù)的關(guān)系時,應(yīng)注意:⑴不
2024-11-06 12:07
【總結(jié)】華東師范大學(xué)出版社華東師范大學(xué)出版社數(shù)學(xué)九年級(上)一元二次方程的解法復(fù)習(xí)回顧只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2,這樣的方程叫做一元二次方程.通常可寫成如下的一般形式:ax2+bx+c=0(a≠0)一元一次方程的解法:直接開平方法因式分解法其中a、b、c分別叫做二次項系數(shù)、一次項
2025-08-04 09:47
【總結(jié)】2.1認(rèn)識一元二次方程第1課時一元二次方程的概念知識點1:一元二次方程的概念1.下列方程是一元二次方程的是()A.x2+2x+y=1B.x2+1x-1=0C.(3x2-1)2-3=0D.3x2-12=x+
2024-11-10 05:43
【總結(jié)】第一課時學(xué)習(xí)目標(biāo)1.經(jīng)歷和體驗數(shù)學(xué)發(fā)現(xiàn)的過程,提高學(xué)生的思維品質(zhì)和進(jìn)行探究學(xué)習(xí)的能力。的關(guān)系;的關(guān)系解決簡單的問題。方程x1x2x1+x2x1x21.x2-2x=02.x2+3x-4=03.x2-5x+6=00
2024-11-24 17:03
【總結(jié)】一、復(fù)習(xí)提問、1、一元二次方程的一般形式是什么?2、解一元二次方程有哪四種方法?3、一元二次方程分類一般形式缺一次項缺常數(shù)項缺一次項及常數(shù)項)0(02????acbxax)0,0,0(02?????cbacax)0,0,0(02?????cbabxax)0,0(02????cbaax
2024-11-21 23:38
【總結(jié)】一元二次方程的根與系數(shù)的關(guān)系(一)方程兩個根x1,x2的值兩根的和兩根的積x1x2x1+x23x2-4x-4=02x2+7x-4=06x2+7x-3=05x2-23x+12=0-2-2/34/3-4/31/2-4-7/2-2-3/21
2024-11-06 16:59
【總結(jié)】一元二次方程的根與系數(shù)的關(guān)系近德固鄉(xiāng)中學(xué):常秀田一元二次方程的根與系數(shù)的關(guān)系近德固鄉(xiāng)中學(xué):常秀田1.填表方程x1,,x2x1+x2x1.x2①x2-3x+2=0②X2-2x-3=0問題:你發(fā)現(xiàn)這些一元二次方程的根與系數(shù)有什么規(guī)律?當(dāng)二次項系數(shù)為1時
2024-11-21 05:28
【總結(jié)】一元二次方程的根與系數(shù)的關(guān)系【探索發(fā)現(xiàn)】觀察下表,你能發(fā)現(xiàn)下列一元二次方程的根與系數(shù)有什么關(guān)系嗎?1x2x2320xx???2320xx???2560xx???20axbxc???30-3-232-2-121230xx??
2024-12-28 05:48
【總結(jié)】第二十一章一元二次方程解一元二次方程總結(jié)反思目標(biāo)突破第二十一章一元二次方程知識目標(biāo)*一元二次方程的根與系數(shù)的關(guān)系知識目標(biāo)*一元二次方程的根與系數(shù)的關(guān)系1.通過求根公式探索并理解根與系數(shù)的關(guān)系,會用這個關(guān)系求一元二次方程兩個根的和與積或未知系數(shù).2.通過對代數(shù)式的熟練變形,
2025-06-16 23:33
【總結(jié)】第二十一章一元二次方程解一元二次方程第二十一章一元二次方程*一元二次方程的根與系數(shù)的關(guān)系*一元二次方程的根與系數(shù)的關(guān)系探究新知活動1知識準(zhǔn)備1.若方程x2+2x+m=0的一個根是1,則m=________.2.a(chǎn)2+b2+_
2025-06-16 23:32
【總結(jié)】第二章一元二次方程第5節(jié)一元二次方程的根與系數(shù)的關(guān)系第一環(huán)節(jié):復(fù)習(xí)回顧?1、一元二次方程的一般形式??2、一元二次方程有實數(shù)根的條件是什么??3、當(dāng)△>0,△=0,△<0根的情況如何??4、一元二次方程的求根公式是什么?
2024-11-24 21:08
【總結(jié)】第1課時一元二次方程問題情境一:1、你還記得什么叫做方程嗎?2、什么是一元一次方程?它的一般形式是怎樣的?創(chuàng)設(shè)情境引入新課問題情境二:1、如圖,有一塊矩形鐵皮,長100cm,寬50cm,在它的四個角分別切去一個正方形,然后將四周突出的部分折起,就能制
2024-11-21 21:32
【總結(jié)】《一元二次方程》說課稿孟軍一、教材分析:一元二次方程是人教版九年級上第二十二章第一節(jié),是中學(xué)數(shù)學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位.實數(shù)與代數(shù)式的運算、一元一次方程是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),可以對上述內(nèi)容加以鞏固.同時,一元二次方程也是以后學(xué)習(xí)(指數(shù)方程、對數(shù)方程、三角方程以及不等式、函數(shù)、二次曲線等內(nèi)容)的基礎(chǔ).此外,學(xué)習(xí)一元二次方程對其他
2025-04-16 12:46
【總結(jié)】一元二次方程講義考點一、概念(1)定義:①只含有一個未知數(shù),并且②未知數(shù)的最高次數(shù)是2,這樣的③整式方程就是一元二次方程。(2)一般表達(dá)式:注:當(dāng)b=0時可化為這是一元二次方程的配方式(3)四個特點:(1)只含有一個未知數(shù);(2)且未知數(shù)次數(shù)最高次數(shù)是2;(3)是整式方程.要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進(jìn)行整理.如果能整理為的形式,
【總結(jié)】龍文教育1對1個性化教案學(xué)生游若楠學(xué)校四十七中學(xué)年級九年級教師徐俊平授課日期2012-08-23授課時段13:00-15:00課題一元二次方程練習(xí)重點難點1、配方法和公式法,并能根據(jù)方程特點,熟練地解一元二次方程。2
2025-08-04 18:33