【總結】一元二次方程合作學習:列出下列問題中關于未知數(shù)x的方程:(1)把面積為4平方米的一張紙分割成如圖所示的正方形和長方形兩個部分,求正方形的邊長.設正方形的邊長為x,可列出方程為______________xxx3(2)據(jù)國家統(tǒng)計局公布的數(shù)據(jù),浙江省2020年全省實現(xiàn)生產(chǎn)總值6700億元,2020年生產(chǎn)總值達920
2025-11-13 00:49
【總結】一元二次方程復習例1將下列方程化為一般形式,并分別指出它們的二次項系數(shù)、一次項系數(shù)和常數(shù)項,并解方程1)2)2()43)(3(????xxx2)(x-2)(x+3)=83)22)2(4???xx例2:關于x的方程(m2
2025-08-16 00:39
【總結】一元二次方程復習第一關知識要點說一說一元二次方程一元二次方程的定義一元二次方程的解法一元二次方程的應用方程兩邊都是整式ax2+bx+c=0(a?0)只含有一個未知數(shù)求知數(shù)的最高次數(shù)是2配方法求根公式法直接開平方法
2025-07-17 23:39
【總結】一元二次方程九年級上冊?本課是在學生已經(jīng)學習一元一次方程、分式方程的基礎上,進一步學習一元二次方程的有關概念.課件說明?學習目標:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.?學習重點:一元二次方程的概念.課件說明1.創(chuàng)設
2025-11-12 23:38
【總結】一元二次方程好()讀書,不好()讀書;好()讀書,不好()讀書解:設花圃的寬是則花圃的長是。,xmmx)219(?2m(1)正方形桌面的面積是2m2,求它的邊長?xm解:設正方形桌面的邊長是(2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,
2025-11-13 02:57
【總結】2.1認識一元二次方程第1課時一元二次方程的概念知識點1:一元二次方程的概念1.下列方程是一元二次方程的是()A.x2+2x+y=1B.x2+1x-1=0C.(3x2-1)2-3=0D.3x2-12=x+
2025-11-01 05:43
【總結】一、復習提問、1、一元二次方程的一般形式是什么?2、解一元二次方程有哪四種方法?3、一元二次方程分類一般形式缺一次項缺常數(shù)項缺一次項及常數(shù)項)0(02????acbxax)0,0,0(02?????cbacax)0,0,0(02?????cbabxax)0,0(02????cbaax
【總結】?1、什么是一元二次方程?2、一元二次方程的一般形式是怎樣的?(第二課時)學習目標1、會判斷一元二次方程的根;2、關于X的“整式方程”的含義是什么?自學指導1、閱讀:P32————P332、思考:(1)(2)會判斷一元
2025-10-28 18:37
【總結】歡迎光臨指導南苑中學陳慶飚(3)(1)一元二次方程的解法回顧與復習1?你以前解過一元二次方程嗎??你會解什么樣的一元二次方程?解下列一元二次方程?你還認識“老朋友”嗎?平方根的意義:?舊意新釋:?(1)x2=5.?老師提示:?這里是解一元二次方程的
2025-10-28 12:08
【總結】一元二次方程授課人:李再義復習?2只含有一個未知數(shù)x,并且都可以化為(a、b、c為常數(shù),且)的形式,這樣的整式a方x+bx+c程叫做一元=0a0二次方程定義:?22我們把(a、b、c為常數(shù),
【總結】課前熱身1、一元二次方程3y(y+1)=7(y+2)-5化為一般形式為;其中二次項系數(shù)為;一次項系數(shù)為;常數(shù)項為。3y2-4y-9=03-4-92、已知關于x的方程(k2-1)x2+kx-1=0為一元二次
2025-11-12 03:06
【總結】一元二次方程單元測驗一、選擇題:(每小題3分,共36分)1.下列方程中是一元二次方程的是 ()(A) (B)(C) (D)2.方程的根為()(A) (B)(C) (D)3.解方程7(8x+3)=6(8x+3)2的最佳方法應選擇()(A)因式分解法 (B)直接開平方法 (C)配方法 (D)公式法4.
2025-03-24 05:32
【總結】設計方案:一元二次方程的應用16m12m設計條件:你能給出設計方案嗎?所建花園的面積占整個荒地面積的一半方案一:花園四周小路的寬度都相等16m12m解:設小路的寬度為x米x16-x12-x(16-x)(12-x)=16×12×12得X1=2
2025-05-25 22:12
【總結】一元二次方程應用題面積問題列方程解應用題的一般步驟:(1)審:仔細分析題意,(2)設:適當?shù)丶僭O某個未知量為未知數(shù);(3)列:根據(jù)題目中的等量關系列出方程;(4)解:解方程,得到方程的解;(5)驗:檢驗方程的解是否符合實際,得到原問題的解;(6)答:答出結果.
【總結】第一篇:一元二次方程應用 :例如經(jīng)濟增長率、人口增長率等。討論的是兩輪(即兩個時間段)的平均變化率,設平均增長率為X,則有下列關系:變化前的數(shù)量×(1+X)2=變化后的數(shù)量。 ,2003年的人均收...
2025-10-27 07:15