【文章內(nèi)容簡介】
. . . . .The reference GPS trajectories . . . . . . . . . . . . . . . . . . . . . . . . . .8890E?ect of calibration on positioning (Test 1). . . . . . . . . . . . . . . . .95E?ect of calibration on positioning (Test 2, 15 minutes) . . . . . . . . . . .96E?ect of calibration on positioning (Test 2). . . . . . . . . . . . . . . . .97Mechanization performance (Test 1). . . . . . . . . . . . . . . . . . . . .99 Mechanization performance (Test 2). . . . . . . . . . . . . . . . . . . . . 100 GPS velocity measurement noise . . . . . . . . . . . . . . . . . . . . . . . . . 101 PDOP during the velocity matching alignment . . . . . . . . . . . . . . . . . 101 Attitude corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Velocity matching alignment residuals . . . . . . . . . . . . . . . . . . . . . . 104 Misalignment of IMU to the vehicle forward direction . . . . . . . . . . . . . 105 Test of nonholonomic constraints for the ?rst dataset . . . . . . . . . . . . . 106 Test of nonholonomic constraints for the second dataset . . . . . . . . . . . . 107xiiiList of Symbols, Abbreviations,NomenclatureThe notations used in this thesis follow those widely used in Geomatics and navigation ?elds.1. Conventions(a) Matrices are denoted as upper case italic letters.(b) Vectors are denoted as underlined lower case italic letters.(c) The coordinate frames that are involved in the vector transformation are denotedas subscript and superscript. For instance, Cbn is the direction cosine matrix fromthe body frame to the navigation frame. For the angular rate vector subscriptdenotes the reference and target frame, and superscript denotes the projected orrealized frame. For example, ωnib represents the angular rate vector of the bodyframe with respect to the inertial frame projected to the navigation frame.xiv(d) Operators are de?ned as:˙???δδ( )??1Ttime derivativeestimated or puted valuesmeasured valuesKalman predictionerror of, correction toDirac delta functionincrement ofmatrix inversematrix transpose inner product( )cross productcross product or skew symmetric form of a vectordiag() diagonal matrixE[ ]f ( )expectationis a function ofL?1() inverse Laplace transform2. Symbols0333 3 zero matrixxvattitude error vectorγλω??φΦθψaAbBCeeEfFnormal gravitygeodetic longitudeangular rate vectorcross product or skew symmetric matrix form of ωgeodetic latituderolltransition matrixpitch, nonorthogonality of IMU axesheadingsemimajor axis of the reference ellipsoiddesign matrixbiasdesign matrixdirection cosine matrix, covariance matrixlinear eccentricity of the reference ellipsoidmeasurement noise vectorcross product or skew symmetric matrix form ofspeci?c force vectordynamics matrixxvig175。gGhHII33KmMNPqQkQ(t)rRgravitational acceleration vectorgravity vectordesign matrix of system noise vectorellipsoidal heightdesign matrix for measurementsidentity matrix3 3 identity matrixKalman gain matrixmeasurementsorder of interpolation or extrapolationradius of curvature in meridianradius of curvature in prime vertical,coe?cient matrix of the normal equationcovariance matrix of state vectorquaternion vectorcovariance matrix of system noise sequence vectorspectral density matrixposition vector, residual vectorrotation matrix of coordinate systems or vectors,covariance matrix of measurement error vectorxviisuv?vfwxyz3. AcronymsBDSTMDCMENUFOGGPSIMUINSMEMSNEDscale factorcontinuous time system noise vectorvelocity vectorvelocity increment vector which is not correctedfor the Coriolis and gravity forcesystem noise sequence vector, misclosure vectorstate vector, xaxisyaxismeasurement vector, zaxisBlack Diamond SystemDirection Cosine MatrixEastNorthUpFibre Optic GyroscopeGlobal Positioning SystemInertial Measuring UnitInertial Navigation SystemMicro Electrical Mechanical SystemsNorthEastDownxviiiChapter 1IntroductionBackground and ObjectiveThe integration of a navigationgrade inertial navigation system (INS) with the global positioning system (GPS) has been done for the application areas in which attitude informationis indispensable and rapid collection of geographic information is required. In practice, integration is necessary for navigation in urban areas where the signal from the satellites issusceptible to blocking by many obstacles (such as skyscrapers, trees, etc.). However, thereare two restrictions in using high performance INSs. One is their price, over US$100,000,and the other is a regulation by the government. Hence, a high performance INS is usuallyused in military applications and mercial airliners, and is not suitable for general pur1CHAPTER 1. INTRODUCTION2