【總結】圓心角、弧、弦、弦心距之間的關系--知識講解(基礎)【學習目標】、圓周角的概念;,能靈活運用圓周角的定理及其推理解決有關問題;,三組量:兩個圓心角、兩條弦、兩條弧,只要有一組量相等,就可以推出其它兩組量對應相等,及其它們在解題中的應用.【要點梳理】要點一、弧、弦、圓心角的關系 如圖所示,∠AOB的頂點在圓心,像這樣頂點在圓心的角叫做圓心角.
2025-07-24 06:24
【總結】圓心角、弧、弦、弦心距之間的關系—知識講解(提高)【學習目標】、圓周角的概念;,能靈活運用圓周角的定理及其推理解決有關問題;,三組量:兩個圓心角、兩條弦、兩條弧,只要有一組量相等,就可以推出其它兩組量對應相等,及其它們在解題中的應用.【要點梳理】要點一、弧、弦、圓心角的關系 如圖所示,∠AOB的頂點在圓心,像這樣頂點在圓心的角叫做圓心角.
【總結】回顧舊知弦連接圓上任意兩點的線段叫做弦.OABCDEF圓上任意兩點間的部分叫做圓弧,簡稱?。畧A?。ɑ。㎡ABAB半圓圓是圖形軸對稱___________O將⊙O沿任何一條直徑所在的直線對折,兩部分圖形________.重合
2025-01-18 16:10
【總結】相交弦定理相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等.已知:求證:證明:例1已知圓中兩條弦相交,第一條弦被交點分為12cm和16cm兩段,第二條弦的長為32cm,求第二條弦被交點分成的兩段的長.練習:1.如
2025-07-22 23:42
【總結】圓是中心對稱圖形嗎?它的對稱中心在哪里?·一、思考圓是中心對稱圖形,它的對稱中心是圓心.圓有旋轉不變性·圓心角:我們把頂點在圓心的角叫做圓心角.OBA二、概念∠AOB為圓心角如圖,將圓心角∠AOB繞圓心O旋轉到∠A’OB’的位置,你能發(fā)現(xiàn)
2025-01-14 16:27
【總結】第3課時圓心角、弧、弦、弦心距間關系滬科版九年級下冊狀元成才路狀元成才路新課導入問題1:圓是中心對稱圖形嗎?它的對稱中心在哪里?問題2:把圓繞著圓心旋轉一個任意角度,旋轉之后的圖形還能與原圖形重合嗎?狀元成才路圓是中心對稱圖形嗎?它的對稱中心在哪里?·
2025-03-12 15:34
【總結】 垂直于弦的直徑是 圖形,任何一條直徑所在的直線都是圓的 .?說法不正確的是( )的對稱軸有無數(shù)條,對稱中心只有一個既是軸對稱圖形,又是中心對稱圖形既是中心對稱圖形,又是旋轉對稱圖形圓繞它的圓心旋轉35°17'42″時,不會與原
2025-06-12 01:18
2025-06-18 12:15
【總結】相交弦定理2020/12/19提問?怎樣證明四條線段成比例??答:利用相似三角形或平行線分線段成比例定理。?怎樣證明兩條線段之積等于另兩條線段之積?答:化為比例式證明2020/12/19已知:AB和CD是圓O的弦,AB和CD交于點P,求證:PA*PB=PC
2024-11-12 16:42
【總結】復習之四相交弦定理切割線定理一.復習目標:.線定理及其應用.,切割線定理的證明.握割線定理及其應用.二、復習指導:回憶知識點,會的直接填寫,不會的可翻書填寫,邊填邊記,比誰能正確填寫,并能運用它們做對習題.三,知識要點:,被交點分成的兩條線段的積.,切線長是這點到割線
2024-11-19 07:59
【總結】射影定理:在直角三角形中,斜邊上的高是兩條直角邊在斜邊射影的比例中項,每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項。在Rt△ABC中,∠ABC
2025-06-19 19:55
【總結】垂直于弦的直徑問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為.問題情境你能求出趙州橋主橋拱的半徑嗎?把一個圓沿著它的任意一條直徑對折,重復幾次,你發(fā)現(xiàn)了什么?由此你能得到什么結論?
2025-06-18 03:17
【總結】實踐探究把一個圓沿著它的任意一條直徑對折,重復幾次,你發(fā)現(xiàn)了什么?由此你能得到什么結論?可以發(fā)現(xiàn):圓是軸對稱圖形,任何一條直徑所在直線都是它的對稱軸.如圖,AB是⊙O的一條弦,CD是直徑,CD⊥AB,垂足為E,沿著CD折疊,你能發(fā)現(xiàn)圖中有那些相等的線段和???為什么?·
【總結】、弦、圓心角二實驗中學西校九年級數(shù)學組知識回顧:,劣弧,圓心角..ODCBA弦AB,BD,CD︵AC︵AD︵CD︵BD︵BC∠AOD∠BOD∠AOC∠COB∠COD1.什么是叫做圓心角?AOB一、圓的對稱性
2025-08-16 01:02
【總結】垂直于弦的直徑
2025-06-14 12:03