【總結(jié)】一、填空題(每空2分,共16分)。1、方程滿足解的存在唯一性定理?xiàng)l件的區(qū)域是 xoy平面 .2.方程組的任何一個(gè)解的圖象是n+1維空間中的一條積分曲線.3.連續(xù)是保證方程初值唯一的充分條件.4.方程組的奇點(diǎn)的類型是中心5.方程的通解是6.變量可分離方程的積分因子是7.二階線性齊次微分方程的兩個(gè)解
2025-06-24 15:00
【總結(jié)】02412—0202412—03=是方程組x=x,x=,在任何不包含原點(diǎn)的區(qū)間a上的基解矩陣。解:令的第一列為(t)=,這時(shí)(t)==(t)故(t)是一個(gè)解。同樣如果以(t)表示第二列,我們有(t)==(t)這樣(t)也是一個(gè)解。因此是解矩陣。又因?yàn)閐et=-t故是基解矩陣。=A(t)x()其中A(t)是區(qū)間a上的連續(xù)nn矩陣,它的元素為a(t),
【總結(jié)】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點(diǎn)M(x,y)處切線的斜率等于該點(diǎn)橫坐標(biāo)4倍,且過(-1,3)點(diǎn),求此曲線方程解:設(shè)曲線方程為,則曲線上任意一點(diǎn)M(x,y)處切線的斜率為根據(jù)題意有這是一個(gè)含有一階導(dǎo)數(shù)的模型引例2(運(yùn)動(dòng)方程):一質(zhì)量為m的物體,從高空自由下落,設(shè)此物體的運(yùn)動(dòng)只受重力的影響。試確定該物體速度隨時(shí)間的變化規(guī)律
2024-10-04 15:15
【總結(jié)】第九章微分方程一、教學(xué)目標(biāo)及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會(huì)解齊次方程。(3)會(huì)用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。(6)會(huì)求自由項(xiàng)多項(xiàng)式、指數(shù)函數(shù)、
2025-06-24 15:07
【總結(jié)】一單項(xiàng)選擇題(每小題2分,共40分)1.下列四個(gè)微分方程中,為三階方程的有()個(gè).(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個(gè)一般的n階微分方程=0的一個(gè)特解,通常應(yīng)給出的初始條件是().A.當(dāng)時(shí),B.當(dāng)時(shí),C.當(dāng)時(shí),D.當(dāng)時(shí),3.微分方程的一個(gè)解是().
2025-03-25 01:12
【總結(jié)】微分方程建模Ⅱ動(dòng)態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個(gè)預(yù)測戰(zhàn)爭結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭的,也有考慮游擊戰(zhàn)爭的,以及雙方分別使用正規(guī)部隊(duì)和游擊部隊(duì)的所謂混合戰(zhàn)爭的。后來人們對(duì)這些模型作了改進(jìn)用以分析歷史上一些著名的戰(zhàn)爭,如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭。預(yù)測戰(zhàn)爭勝負(fù)應(yīng)該考慮哪些因素?;
2024-08-25 00:58
【總結(jié)】其通解形式為非齊次形式:通解為:設(shè)特征方程??兩根為?。非齊次形式:參考資料:本人大學(xué)高數(shù)課件
2025-06-29 13:05
【總結(jié)】實(shí)驗(yàn)四種群數(shù)量的狀態(tài)轉(zhuǎn)移——微分方程一、實(shí)驗(yàn)?zāi)康募耙饬x[1]歸納和學(xué)習(xí)求解常微分方程(組)的基本原理和方法;[2]掌握解析、數(shù)值解法,并學(xué)會(huì)用圖形觀察解的形態(tài)和進(jìn)行解的定性分析;[3]熟悉MATLAB軟件關(guān)于微分方程求解的各種命令;[4]通過范例學(xué)習(xí)建立微分方程方面的數(shù)學(xué)模型以及求解全過程;通過該實(shí)驗(yàn)的學(xué)習(xí),使學(xué)生掌握微分方程(組)求解方法(解析法
2025-06-26 18:22
【總結(jié)】修改稿冷連軋動(dòng)態(tài)變規(guī)格張力微分方程TandemcoldrollingFGCtensiondifferentialequation摘要:介紹了冷連軋動(dòng)態(tài)變規(guī)格概念及軋制工藝特點(diǎn)。以冷連軋機(jī)組機(jī)架間帶鋼受張力拉伸為
2025-06-23 03:06
【總結(jié)】普通方程和微分方程方程組的求解1、線性方程組的解法(1)、直接法使用“/”和“\”:a=magic(5)b=diag(ones(5))a\b使用lu分解X=[377;170;235][LU]=lu(X)b=[123]'Y1=L\by=U\Y1(2)、迭代法Jacobi迭代法:%該函數(shù)用Jacobi迭代法
2025-06-23 23:58
【總結(jié)】習(xí)題2-41.求解下列微分方程:(1)yxxyy????22;解:令uxy?,則原方程化為uuudxdux????212,即xdxduuu???122,積分得:cxuuu??????ln1ln2111ln2還原變量并化簡得:3)()(yxcxy???(2)
2025-01-10 04:03
【總結(jié)】機(jī)動(dòng)目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【總結(jié)】作業(yè)習(xí)題1、求下列函數(shù)的導(dǎo)數(shù)。(1);(2);(3);(4);(5);(6)。2、求下列隱函數(shù)的導(dǎo)數(shù)。(1);(2)已知求。3、求參數(shù)方程所確定函數(shù)的一階導(dǎo)數(shù)與二階導(dǎo)數(shù)。4、求下列函數(shù)的高階導(dǎo)數(shù)。(1)求;(2)求。5、求下列函數(shù)的微分。(1);(2)。6、求雙曲線,在點(diǎn)處的切線方程與法線方程。7、用定
2025-01-14 12:50
【總結(jié)】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會(huì)遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-04-29 06:42
【總結(jié)】例1.求微分方程的通解。解:,分離變量,兩邊積分:記,方程通解為:。:注:事實(shí)上,,積分后得:,。例2.求微分方程滿足初始條件的特解。解:分離變量:,兩邊積分:,方程的通解為:。初始條件,則,,所求特解:或例3.設(shè)()連續(xù)可微且,已知曲線、軸、軸上過原點(diǎn)及點(diǎn)的兩條垂線所圍成的圖形的面積值與曲線的一段弧長相等,求。
2024-10-04 16:01