freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年勾股定理說課稿10分鐘13篇(匯總)(編輯修改稿)

2025-08-13 00:56 本頁面
 

【文章內(nèi)容簡介】 標準實驗教科書數(shù)學八年級上冊第三章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個非常重要的定理,它是對直角三角形的再認識,也是判斷一個三角形是不是直角三角形的一種重要方法。還是向學生滲透“數(shù)形結合”這一數(shù)學思想方法的很好素材。八年級正是學生由實驗幾何向推理幾何過渡的重要時期,通過對勾股定理逆定理的探究,培養(yǎng)學生的分析思維能力,發(fā)展推理能力。在教學中滲透類比、轉化,從特殊到一般的思想方法。二、說教學目標。教學目標支配著教學過程,教學目標的制定和落實是實施課堂教學的關鍵??紤]到學生已有的認知結構心理特征及本班學生的實際情況,我制定了如下教學目標:知識與技能:探索并掌握直角三角形判別思想,會應用勾股定理及逆定理解決實際問題。過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結合”方法的應用。情感、態(tài)度、價值觀:培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系。三、說教學重點、難點,關鍵。本著課程標準,在吃透教材的基礎上,我確立了如下的教學重、難點及關鍵。重點:理解并掌握勾股定理的逆定理,并會應用。難點:理解勾股定理的逆定理的推導。關鍵:動手驗證,體驗勾股定理的逆定理。四、說教法。在本節(jié)課中,我設計了以下幾種教法學法:情景教學法,啟發(fā)教學法,分層導學法。讓學生實踐活動,動手操作,看自己畫的三角形是否為一個直角三角形。體會觀察,作出合理的推測。同時通過引入,讓學生了解古代都用這種方法來確定直角的。對學生進行動手能力培養(yǎng)的同時,引導命題的形成過程,自然地得出勾股定理的逆定理。既鍛煉了學生的實踐、觀察能力,又滲透了人文和探究精神。五、說教學流程。動手實踐,檢測猜測。引導學生分別以3cm,4cm,5cm , 2.5cm,6cm,6.5cm和4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm為邊畫出兩個三角形,觀察猜測三角形的形狀。再引導啟發(fā)學生從這兩個活動中歸納思考:如果三角形的三邊長a、b、c滿足,那么此三角形是什么三角形?在整個過程的活動中,盡量給學生充足的時間和空間,以平等的身份參與到學生活動中來,幫助指導學生的實踐活動。探索歸納,證明猜測。勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,構造直角三角形就成為解決問題的關鍵。如果此時直接將問題拋給學生證明,學生定會覺得無從下手。我就采用分層導進的方法,讓學生從具體的例子中感受總結,再歸納到中抽象中來。于是我就設計了這樣的兩個步驟:先補充一道例題:三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請簡單說明理由。然后再更改上面的例題,變?yōu)椤鱝bc三邊長為a、b、c,滿足,與以a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。在這個過程中,要努力引導學生聯(lián)想到“全等”,進而設法構造直角三角形,讓學生在不斷的嘗試、探究的過程中,總結出勾股定理的逆定理。有效地突破本節(jié)的難點。同時提出原命題與逆命題及其關系。培養(yǎng)良好的數(shù)學學習習慣對學生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學生一起分析定理的題設與結論,并與勾股定理進行對比,明白兩定理是互逆定理。嘗試運用,熟悉定理。課本中的例題是讓學生進一步熟練掌握勾股定理的逆定理及其運用的步驟。分層訓練,能力升級。有針對性有層次性地布置練習,及時反饋教學效果,查缺被漏,并對有困難的學生給予指導??偨Y內(nèi)容,強化認識。使學生再次感悟勾股定理的逆定理,體會定理的互逆性,加深對“數(shù)形結合”的理解,更深刻地理解數(shù)學思想方法在解題中的地位和作用,激發(fā)學生學習數(shù)學的興趣。布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學生的個體差異,滿足多樣化學習的需要。結束語:我的說課完了,非常感謝各位領導和專家給了我這次學習、聆聽、參與、鍛煉的機會。謝謝大家!勾股定理說課稿10分鐘篇六(一)教材所處的地位這節(jié)課是九年制義務教育課程標準實驗教科書八年級第十八章第一節(jié)勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。(二)根據(jù)課程標準,本課的教學目標是:知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程。數(shù)學思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結合的思想。解決問題:①通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。②在探究過程中,學會與人合作并能與他人交流思維的過程和探究的結果。情感態(tài)度:①通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激發(fā)學生發(fā)奮學習。②在探究過程中,體驗解決問題方法的多樣性,培養(yǎng)學生的合作交流意識和探索精神。(三)本課的教學重點:探索和證明勾股定理本課的教學難點:用拼圖的方法證明勾股定理教法分析:針對八年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題實驗操作歸納驗證問題解決鞏固練習課堂小結 布置作業(yè)七部分。學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。(一)提出問題:首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設問題情境,2002年在北京召開了第24屆國際數(shù)學家大會,它是最高水平的全球性數(shù)學科學學術會議,被譽為數(shù)學界的奧運會,這就是本屆大會會徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學生的求知欲。其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生的學習興趣,激發(fā)學生的求知欲。勾股定理說課稿10分鐘篇七尊敬的各位考官:大家好,我是x號考生,今天我說課的題目是《勾股定理的逆定理》。新課標指出:數(shù)學課程要面向全體學生,適應學生個性發(fā)展的需要,使得人人都能獲得良好的數(shù)學教育,不同的人在數(shù)學上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。首先來談一談我對教材的理解。本節(jié)課選自人教版初中數(shù)學八年級下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學生掌握勾股定理及一般三角形性質的基礎上進行教學的。應用前面學習的勾股定理及三角形全等證明逆定理是本節(jié)課的關鍵步驟,同時本節(jié)課又豐富了三角形的性質,是后面幾何問題的基礎理論性知識。接下來談談學生的實際情況。本階段的學生已經(jīng)掌握了一定的基礎知識,處于由幾何內(nèi)容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學生能力的不成熟,教學中鼓勵與引導并重。根據(jù)以上對教材的分析以及對學情的把握,我制定了如下教學目標:(一)知識與技能理解并掌握勾股定理的逆定理,會應用定理判定直角三角形。理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系。理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。(二)過程與方法經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。(三)情感、態(tài)度與價值觀體會事物之間的聯(lián)系,感受幾何的魅力。在教學目標的實現(xiàn)過程中,教學重點是勾股定理的逆定理及其證明,教學難點是勾股定理的逆定理的證明。為了突破重點,解決難點,順利達成教學目標,教學中我將主要采用小組討論、自主探究的教學方法,輔以適量的教師講解和引導,把課堂還給學生。下面我將重點談談我對教學過程的設計。(一)導入新課課堂伊始,我采用復習舊知與創(chuàng)設情境相結合的導入方式。首先我會帶領學生復習勾股定理并明確其題設和結論,為后面提出逆命題、逆定理做鋪墊。接著提問學生如何畫直角三角形,學生很容易想到用三角尺或量角器。此時我會要求學生不能用繩子以外的工具,借助學生的困惑,給出古埃及人利用等長的5個繩結間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。通過這樣的導入方式,能夠帶領學生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎,同時用情境激發(fā)學生的好奇心和求知欲,更好地展開教學。(二)講解新知接下來是最重要的新授環(huán)節(jié)。請學生思考3,4,5之間的關系,結合勾股定理的學習經(jīng)驗明確,6cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數(shù)據(jù),如4cm,,畫出相應邊長的三角形檢驗是否為直角三角形。在得到肯定結論后,引導學生基于以上例子大膽猜想得出命題。勾股定理說課稿10分鐘篇八今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數(shù)學下冊第十八章第一節(jié)的第一課時。教材分析本節(jié)課是學生在已經(jīng)掌握了直角三角形有關性質的基礎上進行學習的,通過20xx年國際數(shù)學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數(shù)量關系,并應用它解決問題。學好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。學情分析通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。教學目標:根據(jù)八年級學生的認知水平,依據(jù)新課程標準和教學大綱的要求,我制定了如下的教學目標:知識與能力目標:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結規(guī)律的意識和能力.過程與方法目標:通過創(chuàng)設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。情感態(tài)度價值觀目標:感受數(shù)學文化,激發(fā)學生學習的熱情,體驗合作學習成功的喜悅,滲透數(shù)形結合的思想。教學通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學重難點為探索和證明勾股定理.根據(jù)學生情況,為有效培養(yǎng)學生能力,在教學過程中,以創(chuàng)設問題情境為先導,運用直觀教具、多媒體等手段,激發(fā)學生學習興趣,調(diào)動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。教法“教必有法,而教無定法”,只有方法恰當,才會有效。根據(jù)本課內(nèi)容特點和八年級學生思維活動特點,我采用了引導發(fā)現(xiàn)教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。學法“授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現(xiàn)學習的自主性,從不同層次發(fā)掘不同學生的不同能力,從而達到發(fā)展學生思維能力的目的,發(fā)掘學生的創(chuàng)新精神。教學模式根據(jù)新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創(chuàng)設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。(一)創(chuàng)設情境,引入新課利用多媒體課件,給學生出示20xx年國際數(shù)學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實生活中提出趙爽弦圖,激發(fā)學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。(二)引導學生,探究新知初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關系,創(chuàng)設感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為2時,所形成的規(guī)律,使學生再次感知發(fā)現(xiàn)的規(guī)律。提出猜想:在活動1的基礎上,學生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1