freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學九年級知識點總結(jié):28銳角三角函數(shù)(編輯修改稿)

2025-04-05 21:19 本頁面
 

【文章內(nèi)容簡介】 a≥0,b≥0)√a/b=√a /√b(a≥0,b0)二數(shù)二次根之積,等于二數(shù)之積的二次根。2 共軛因式如果兩個含有根式的代數(shù)式的積不再含有根式,那么這兩個代數(shù)式叫做共軛因式,也稱互為有理化根式。1 同類二次根式一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式。2 合并同類二次根式把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式。3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進行合并 Ⅵ.二次根式的混合運算1確定運算順序2靈活運用運算定律3正確使用乘法公式4大多數(shù)分母有理化要及時5在有些簡便運算中也許可以約分,不要盲目有理化分母有理化有兩種方法如:√a/√b=√a√b/√b√b=√ab/b 6 要利用平方差公式如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 要利用平方差公式如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章 一元二次方程知識框圖第23章 旋轉(zhuǎn)知識框圖 7 旋轉(zhuǎn)的定義在平面內(nèi),將一個圖形繞一個圖形按某個方向轉(zhuǎn)動一個角度,這樣的運動叫做圖形的旋轉(zhuǎn)。這個定點叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞著某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應點到旋轉(zhuǎn)中心的距離相等,對應線段的長度、對應角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。旋轉(zhuǎn)對稱中心大于360176。)。 把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0176。,中心對稱和中心對稱圖形是兩個不同而又緊密聯(lián)系的概念.它們的區(qū)別是:中心對稱是指兩個全等圖形之間的相互位置關系,這兩個圖形關于一點對稱,這個點是對稱中心,兩個圖形關于點的對稱也叫做中心對稱.成中心對稱的兩個圖形中,其中一個上所有點關于對稱中心的對稱點都在另一個圖形上,反之,另一個圖形上所有點的對稱點,又都在這個圖形上;而中心對稱圖形是指一個圖形本身成中心對稱.中心對稱圖形上所有點關于對稱中心的對稱點都在這個圖形本身上.如果將中心對稱的兩個圖形看成一個整體(一個圖形),那么這個圖形就是中心對稱圖形;一個中心對稱圖形,如果把對稱的部分看成是兩個圖形,那么它們又是關于中心對稱. 也就是說:① 中心對稱圖形:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說, 8 這個圖形成中心對稱圖形。②中心對稱:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。中心對稱圖形正(2N)邊形(N為大于1的正整數(shù)),線段,矩形,菱形,圓只是中心對稱圖形平行四邊形等.既不是軸對稱圖形又不是中心對稱圖形不等邊三角形,非等腰梯形等.中心對稱的性質(zhì)①關于中心對稱的兩個圖形是全等形。②關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。 ③關于中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。識別一個圖形是否是中心對稱圖形就是看是否存在一點,使圖形繞著這個點旋轉(zhuǎn)180176。后能與原圖形重合。中心對稱是指兩個圖形繞某一個點旋轉(zhuǎn)180176。后,能夠完全重合,稱這兩個圖形關于該點對稱,兩圖形成中心對稱,必有對稱中點,而點只有能使兩個圖形旋轉(zhuǎn)180176。后完全重合才稱為對稱中點.第24章 圓知識框圖 9 〖幾何中圓的定義〗幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。 集合說:到定點的距離等于定長的點的集合叫做圓?!紙A的相關量〗圓周率:圓周長度與圓的直徑長度的比叫做圓周率,值是...,通常用π表示,(但奧數(shù)常取3或)。圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。 10 內(nèi)心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。〖圓和圓的相關量字母表示方法〗圓—⊙ 半徑—r 弧—⌒ 直徑—d扇形弧長/圓錐母線—l 周長—C 面積—S〖圓和其他圖形的位置關系〗圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r。直線與圓有3種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線AB與圓O為例(設OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交Rr<P<R+r;內(nèi)切P=Rr;內(nèi)含P<Rr。圓的平面幾何性質(zhì)和定理一有關圓的基本性質(zhì)與定理⑴圓的確定:不在同一直線上的三個點確定一個圓。圓的對稱性質(zhì):圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。 垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。⑵有關圓周角和圓心角的性質(zhì)和定理 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應的其余各組量都分別相等。 一條弧所對的圓周角等于它所對的圓心角的一半。 直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。⑶有關外接圓和內(nèi)切圓的性質(zhì)和定理①一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;②內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形三邊距離相等。③S三角=1/2*△三角形周長*內(nèi)切圓半徑 11 ④兩相切圓的連心線過切點(連心線:兩個圓心相連的線段)⑤圓O中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點?!加嘘P切線的性質(zhì)和定理〗圓的切線垂直于過切點的半徑;經(jīng)過半徑的一端,并且垂直于這條半徑的直線,是這個圓的切線。切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。切線的性質(zhì):(1)經(jīng)過切點垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點的半徑。切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。 〖有關圓的計算公式〗=2πr=πd =πr^2。 =nπr/180=π(R^2r^2) =πrl圓的解析幾何性質(zhì)和定理〖圓的解析幾何
點擊復制文檔內(nèi)容
醫(yī)療健康相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1