freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

九年級數學一模試題分類匯編——二次函數綜合附答案解析(編輯修改稿)

2025-04-01 22:55 本頁面
 

【文章內容簡介】 或(﹣4,0);②當AB=BC時,則:(5﹣m)2+92=132,解得:m=5,即:點C坐標為(5,0)或(5﹣2,0);③當AC=BC時,則:5﹣m)2+92=(m)2+(﹣3)2,解得:m=,則點C坐標為(,0).綜上所述:存在,點C的坐標為:(177。4,0)或(5,0)或(,0);(3)過點P作y軸的平行線交AB于點H.設直線AB的表達式為y=kx﹣3,把點B坐標代入上式,9=5k﹣3,則k,故函數的表達式為:yx﹣3,設點P坐標為(m,m2m﹣3),則點H坐標為(m,m﹣3),S△PAB?PH?xB(m2+12m)=-6m2+30m=,當m=時,S△PAB取得最大值為:.答:△PAB的面積最大值為.【點睛】本題是二次函數綜合題.主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.7.對于某一函數給出如下定義:若存在實數m,當其自變量的值為m時,其函數值等于﹣m,則稱﹣m為這個函數的反向值.在函數存在反向值時,該函數的最大反向值與最小反向值之差n稱為這個函數的反向距離.特別地,當函數只有一個反向值時,其反向距離n為零.例如,圖中的函數有4,﹣1兩個反向值,其反向距離n等于5.(1)分別判斷函數y=﹣x+1,y=,y=x2有沒有反向值?如果有,直接寫出其反向距離;(2)對于函數y=x2﹣b2x,①若其反向距離為零,求b的值;②若﹣1≤b≤3,求其反向距離n的取值范圍;(3)若函數y=請直接寫出這個函數的反向距離的所有可能值,并寫出相應m的取值范圍.【答案】(1)y=?有反向值,反向距離為2;y=x2有反向值,反向距離是1;(2)①b=177。1;②0≤n≤8;(3)當m>2或m≤﹣2時,n=2,當﹣2<m≤2時,n=4.【解析】【分析】(1)根據題目中的新定義可以分別計算出各個函數是否有方向值,有反向值的可以求出相應的反向距離;(2)①根據題意可以求得相應的b的值;②根據題意和b的取值范圍可以求得相應的n的取值范圍;(3)根據題目中的函數解析式和題意可以解答本題.【詳解】(1)由題意可得,當﹣m=﹣m+1時,該方程無解,故函數y=﹣x+1沒有反向值,當﹣m=時,m=177。1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距離為2,當﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距離是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距離為零,∴|b2﹣1﹣0|=0,解得,b=177。1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=,∴當x≥m時,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;當x<m時,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,當m>2或m≤﹣2時,n=2,當﹣2<m≤2時,n=4.【點睛】本題是一道二次函數綜合題,解答本題的關鍵是明確題目中的新定義,找出所求問題需要的條件,利用新定義解答相關問題.8.如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,3).(1)求拋物線y=x2+bx+c的表達式;(2)點D為拋物線對稱軸上一點,當△BCD是以BC為直角邊的直角三角形時,求點D的坐標;(3)點P在x軸下方的拋物線上,過點P的直線y=x+m與直線BC交于點E,與y軸交于點F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3).【解析】試題分析:(1)利用待定系數法求拋物線解析式;(2)如圖1,設D(2,y),利用兩點間的距離公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后討論:當BD為斜邊時得到18+4+(y﹣3)2=1+y2;當CD為斜邊時得到4+(y﹣3)2=1+y2+18,再分別解方程即可得到對應D的坐標;(3)先證明∠CEF=90176。得到△ECF為等腰直角三角形,作PH⊥y軸于H,PG∥y軸交BC于G,如圖2,△EPG、△PHF都為等腰直角三角形,則PE=PG,PF=PH,設P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),接著利用t表示PF、PE,這樣PE+EF=2PE+PF=﹣t2+4t,然后利用二次函數的性質解決問題.試題解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:,解得:,∴拋物線y=x2+bx+c的表達式為y=x2﹣4x+3;(2)如圖1,拋物線的對稱軸為直線x=﹣=2,設D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,當△BCD是以BC為直角邊,BD為斜邊的直角三角形時,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此時D點坐標為(2,5);當△BCD是以BC為直角邊,CD為斜邊的直角三角形時,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此時D點坐標為(2,﹣1);(3)易得BC的解析式為y=﹣x+3.∵直線y=x+m與直線y=x平行,∴直線y=﹣x+3與直線y=x+m垂直,∴∠CEF=90176。,∴△ECF為等腰直角三角形,作PH⊥y軸于H,PG∥y軸交BC于G,如圖2,△EPG、△PHF都為等腰直角三角形,PE=PG,PF=PH,設P(t,t2﹣4t+3)(1<t<3),則G(t,﹣t+3),∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=PG=﹣t2+t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+3t+t=﹣t2+4t=﹣(t﹣2)2+4,當t=2時,PE+EF的最大值為4.點睛:本題考查了二次函數的綜合題.熟練掌握等腰直角三角形的性質、二次函數圖象上點的坐標特征和二次函數的性質;會利用待定系數法求二次函數解析式;理解坐標與圖形性質,記住兩點間的距離公式.9.如圖,已知拋物線經過原點O,頂點A(1,﹣1),且與直線y=kx+2相交于B(2,0)和C兩點(1)求拋物線和直線BC的解析式;(2)求證:△ABC是直角三角形;(3)拋物線上存在點E(點E不與點A重合),使∠BCE=∠ACB,求出點E的坐標;(4)在拋物線的對稱軸上是否存在點F,使△BDF是等腰三角形?若存在,請直接寫出點F的坐標.【答案】(1)y=x2﹣2x,y=﹣x+2;(2)詳見解析;(3)E();(4)符合條件的點F的坐標(1,)或(1,﹣)或(1,2+)或(1,2﹣).【解析】【分析】(1)將B(2,0)代入設拋物線解析式y(tǒng)=a(x﹣1)2﹣1,求得a,將B(2,0)代入y=kx+2,求得k;(2)分別求出ABBCAC2,根據勾股定理逆定理即可證明;(3)作∠BCE=∠ACB,與拋物線交于點E,延長AB,與CE的延長線交于點A39。,過A39。作A39。H垂直x軸于點H,設二次函數對稱軸于x軸交于點G.根據對稱與
點擊復制文檔內容
研究報告相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1