freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

【中考數(shù)學】易錯易錯壓軸勾股定理選擇題復習題(含答案)(2)(編輯修改稿)

2025-04-01 22:30 本頁面
 

【文章內(nèi)容簡介】 在中, ,∴,∴從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為.故選D.【點睛】本題考查了平面展開最短路徑問題,解題的關(guān)鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.7.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對公式進行合適的變形即可判斷各個選項是否爭取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長是2它等于三角形較長的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯誤.故選D.【點睛】、B、C選項的等式中需理解等式的各個部分表示的幾何意義,對于D選項是由A、C選項聯(lián)立得出的.8.C解析:C【分析】依據(jù)每列數(shù)的規(guī)律,即可得到,進而得出的值.【詳解】解:由題可得:……當 故選C【點睛】本題為勾股數(shù)與數(shù)列規(guī)律綜合題;觀察數(shù)列,找出規(guī)律是解答本題的關(guān)鍵.9.D解析:D【分析】根據(jù)已知設AC=x,BC=y(tǒng),在Rt△ACD和Rt△BCE中,根據(jù)勾股定理分別列等式,從而求得AC,BC的長,最后根據(jù)勾股定理即可求得AB的長.【詳解】如圖,在△ABC中,∠C=90176。,AD、BE為△ABC的兩條中線,且AD=2,BE=5,求AB的長.設AC=x,BC=y(tǒng),根據(jù)勾股定理得:在Rt△ACD中,x2+(y)2=(2)2,在Rt△BCE中,(x)2+y2=52,解之得,x=6,y=4,∴在Rt△ABC中, ,故選:D.【點睛】此題考查勾股定理的運用,在直角三角形中,已知兩條邊長時,可利用勾股定理求第三條邊的長度.10.B解析:B【分析】設OA=a,OB=b,OC=c,OD=d,根據(jù)勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可證得a2+d2=18,由此得到答案.【詳解】設OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,則a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣162=18,∴AD=,故選:B.【點睛】此題考查勾股定理的運用,根據(jù)題中的已知條件得到直角三角形,再利用勾股定理求出未知的邊長,解題中注意直角邊與斜邊.11.B解析:B【分析】過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45176。,于是得到∠CBC′=90176。,然后根據(jù)勾股定理即可得到結(jié)論.【詳解】解:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=2,BD=6,∴BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45176。,∴∠CBC′=90176。,∴BC′⊥BC,∠BCC′=∠BC′C=45176。,∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點睛】此題考查了軸對稱﹣線路最短的問題,確定動點P為何位置時 PC+PD的值最小是解題的關(guān)鍵.12.C解析:C【分析】觀察圖形可知,小正方形的面積=大正方形的面積4個直角三角形的面積,利用已知 =21,大正方形的面積為13,可以得以直角三角形的面積,進而求出答案。【詳解】由于大正方形的邊長為,又大正方形的面積為13,即,而小正方形的面積表達式為,而小正方形的面積表達式為 故本題正確答案為C.【點睛】本題主要考查直角三角形,用到勾股定理的證明,正確計算是解題的關(guān)鍵.13.A解析:A【分析】分三種情況討論:把左側(cè)面展開到水平面上,連結(jié)AB;把右側(cè)面展開到正面上,連結(jié)AB,;把向上的面展開到正面上,連結(jié)AB;然后利用勾股定理分別計算各情況下的AB,再進行大小比較.【詳解】把左側(cè)面展開到水平面上,連結(jié)AB,如圖1把右側(cè)面展開到正面上,連結(jié)AB,如圖2把向上的面展開到正面上,連結(jié)AB,如圖3∵∴ ∴需要爬行的最短距離為25cm故選:A.【點睛】本題考查了平面展開及其最短路徑問題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問題
點擊復制文檔內(nèi)容
畢業(yè)設計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1