freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題訓練經典題目(附答案)50(5)(編輯修改稿)

2025-04-01 22:15 本頁面
 

【文章內容簡介】 解】如圖,過點C作CH⊥AB,連接CD, ∵AC=BC,CH⊥AB,AB=8,∴AH=BH=4,∵AC=5,∴,∵,∴,∴,∴DE+DF=,故選:D.【點睛】此題考查等腰三角形三線合一的性質,勾股定理解直角三角形,根據(jù)題意得到的思路是解題的關鍵,依此作輔助線解決問題.6.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時,高AD分別在△ABC的內部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長為:15+13+4=32故選:C【點睛】本題考查勾股定理,解題關鍵是多解,注意當幾何題型題干未提供圖形時,往往存在多解情況.7.B解析:B【分析】過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45176。,于是得到∠CBC′=90176。,然后根據(jù)勾股定理即可得到結論.【詳解】解:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=2,BD=6,∴BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45176。,∴∠CBC′=90176。,∴BC′⊥BC,∠BCC′=∠BC′C=45176。,∴BC=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點睛】此題考查了軸對稱﹣線路最短的問題,確定動點P為何位置時 PC+PD的值最小是解題的關鍵.8.B解析:B【分析】首先由,得知動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,則BE的長就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵, 設點P到CD的距離為h,則點P到AB的距離為(4h),則,解得:h=1,∴點P到CD的距離1,到AB的距離為3,∴如下圖所示,動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,且兩點之間線段最短,∴PA+PB的最小值即為BE的長度,AE=6,AB=3,∠BAE=90176。,根據(jù)勾股定理:,故選:B.【點睛】本題考查了軸對稱—最短路線問題(兩點之間線段最短),勾股定理,得出動點P所在的位置是解題的關鍵.9.D解析:D【分析】由等式可分別得到關于a、b、c的等式,從而分別計算得到a、b、c的值,再由的關系,可推導得到△ABC為直角三角形.【詳解】∵又∵ ∴∴ ∴ ∴△ABC為直角三角形故選:D.【點睛】本題考察了平方、二次根式、絕對值和勾股定理逆定理的知識;求解的關鍵是熟練掌握二次根式、絕對值和勾股定理逆定理,從而完成求解.10.A解析:A【分析】先根據(jù)角平分線的性質可證CD=DE,從而根據(jù)“HL”證明Rt△ACD≌Rt△AED,由DE為AB中線且DE⊥AB,可求AD=BD=3cm ,然后在Rt△BDE中,根據(jù)直角三角形的性質即可求出BE的長.【詳解】∵AD平分∠BAC且∠C=90176。,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E為AB中點,∴AC=AE=AB,所以,∠B=30176。 .∵DE為AB中線且DE⊥AB,∴AD=BD=3cm ,∴DE=BD=,∴BE= cm.故選A.【點睛】本題考查了角平分線的性質,線段垂直平分線的性質,全等三角形的判定與性質,含30176。角的直角三角形的性質,及勾股定理等知識,熟練掌握全等三角形的判定與性質是解答本題的關鍵.11.A解析:A【解析】【分析】作AD′⊥AD,AD′=AD,連接CD′,DD′,根據(jù)等式的性質,可得∠BAD與∠CAD′的關系,根據(jù)SAS,可得△BAD與△CAD′的關系,根據(jù)全等三角形的性質,可得BD與CD′的關系,根據(jù)勾股定理,可得答案.【詳解】作AD′⊥AD,AD′=AD,連接CD′,DD′,則有∠AD′D=∠D′AD=,∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD與△CAD′中,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90176。,由勾股定理得DD′==4,∠D′DA+∠ADC=90176。,由勾股定理得CD′===6,故選A.【點睛】本題考查了全等三角形的判定與性質,利用了全等三角形的判定與性質,勾股定理,添加輔助線作出全等圖形
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1