freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)專題平行四邊形綜合檢測試卷及答案(編輯修改稿)

2025-04-01 22:02 本頁面
 

【文章內(nèi)容簡介】 上,A39。落在CD邊上時,由折疊的性質(zhì)得:A39。P=AP,A39。Q=AQ=10,在Rt△DQA39。中,DQ=ADAQ=8,由勾股定理求出DA39。=6,得出A39。C=CDDA39。=2,在Rt△ABP和Rt△A39。PC中,BP=2t4,CP=BCBP=222t,由勾股定理得出方程,解方程即可.【詳解】(1)∵點P從AB邊的中點E出發(fā),速度為每秒2個單位長度,∴AB=2BE,由圖象得:t=2時,BE=22=4,∴AB=2BE=8,AE=BE=4,t=11時,2t=22,∴BC=224=18,當(dāng)t=0時,點P在E處,m=△AEQ的面積=AQAE=104=20;故答案為8,18,20;(2)當(dāng)t=1秒時,以PQ為直徑的圓不與BC邊相切,理由如下: 當(dāng)t=1時,PE=2,∴AP=AE+PE=4+2=6,∵四邊形ABCD是矩形,∴∠A=90176。,∴PQ=,設(shè)以PQ為直徑的圓的圓心為O39。,作O39。N⊥BC于N,延長NO39。交AD于M,如圖1所示:則MN=AB=8,O39。M∥AB,MN=AB=8,∵O39。為PQ的中點, ∴O39。39。M是△APQ的中位線,∴O39。M=AP=3,∴O39。N=MNO39。M=5<,∴以PQ為直徑的圓不與BC邊相切;(3)分三種情況:①當(dāng)點P在AB邊上,A39。落在BC邊上時,作QF⊥BC于F,如圖2所示:則QF=AB=8,BF=AQ=10,∵四邊形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90176。,CD=AB=8,AD=BC=18,由折疊的性質(zhì)得:PA39。=PA,A39。Q=AQ=10,∠PA39。Q=∠A=90176。,∴A39。F==6,∴A39。B=BFA39。F=4,在Rt△A39。BP中,BP=42t,PA39。=AP=8(42t)=4+2t,由勾股定理得:42+(42t)2=(4+2t)2,解得:t=;②當(dāng)點P在BC邊上,A39。落在BC邊上時,連接AA39。,如圖3所示:由折疊的性質(zhì)得:A39。P=AP,∴∠APQ39。=∠A39。PQ,∵AD∥BC,∴∠AQP=∠A39。PQ,∴∠APQ=∠AQP,∴AP=AQ=A39。P=10,在Rt△ABP中,由勾股定理得:BP==6, 又∵BP=2t4,∴2t4=6,解得:t=5;③當(dāng)點P在BC邊上,A39。落在CD邊上時,連接AP、A39。P,如圖4所示:由折疊的性質(zhì)得:A39。P=AP,A39。Q=AQ=10,在Rt△DQA39。中,DQ=ADAQ=8,由勾股定理得:DA39。==6,∴A39。C=CDDA39。=2,在Rt△ABP和Rt△A39。PC中,BP=2t4,CP=BCBP=18(2t4)=222t,由勾股定理得:AP2=82+(2t4)2,A39。P2=22+(222t)2,∴82+(2t4)2=22+(222t)2,解得:t=;綜上所述,t為或5或時,折疊后頂點A的對應(yīng)點A′落在矩形的一邊上.【點睛】四邊形綜合題目,考查了矩形的性質(zhì)、折疊變換的性質(zhì)、勾股定理、函數(shù)圖象、直線與圓的位置關(guān)系、三角形中位線定理、等腰三角形的判定、以及分類討論等知識.8.(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為  ??;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60176。,得到正方形AB39。C39。D39。,請直接寫出BD39。平方的值.【答案】(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】【分析】(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90176。,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60176。,②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60176。,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為:AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD 和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90176。,∴∠AMF=∠MAN=∠ANF=90176。,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60176。,如圖所示:過D39。作D39。E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD39。=60176。,∴∠EAD39。=30176。,∵AB=2=AD39。,∴D39。E=AD39。=,AE=,∴BE=2+,∴Rt△BD39。E中,BD39。2=D39。E2+BE2=()2+(2+)2=16+8②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60176。,如圖所示:過B作BF⊥AD39。于F,旋轉(zhuǎn)可得,∠DAD39。=60176。,∴∠BAD39。=30176。,∵AB=2=AD39。,∴BF=AB=,AF=,∴D39。F=2﹣,∴Rt△BD39。F中,BD39。2=BF2+D39。F2=()2+(2)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運用,解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.9.如圖,拋物線y=mx2+2mx+n經(jīng)過A(﹣3,0),C(0,﹣)兩點,與x軸交于另一點B.(1)求經(jīng)過A,B,C三點的拋物線的解析式;(2)過點C作CE∥x軸交拋物線于點E,寫出點E的坐標(biāo),并求AC、BE的交點F的坐標(biāo)(3)若拋物線的頂點為D,連結(jié)DC、DE,四邊形CDEF是否為菱形?若是,請證明;若不是,請說明理由.【答案】(1)y=x2+x﹣;(2)F點坐標(biāo)為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明見解析【解析】【分析】將A、C點的坐標(biāo)代入拋物線的解析式中,通過聯(lián)立方程組求得該拋物線的解析式;根據(jù)(1)題所得的拋物線的解析式,可確定拋物線的對稱軸方程以及B、C點的坐標(biāo),由CE∥x軸,可知C、E關(guān)于對稱軸對稱。根據(jù)A、C點求得直線AC的解析式,根據(jù)B、E點求出直線BE的解析式,聯(lián)立方程求得的解,即為F點的坐標(biāo);由E、C、F、D的坐標(biāo)可知DF和EC互相垂直平分,則可判定四邊形CDEF為菱形.【詳解】(1
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1