freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學易錯題專題復習-平行四邊形練習題及答案解析(編輯修改稿)

2025-03-30 22:21 本頁面
 

【文章內(nèi)容簡介】 示線段AB,HM與EF之間的數(shù)量關(guān)系,并證明.【答案】(1)詳見解析;(2)詳見解析;(3),證明詳見解析.【解析】【分析】(1)根據(jù)正方形性質(zhì), 得到.(2)由,平分,,所以.(3)過點作于點,由正方形性質(zhì),,所以.由,得.【詳解】(1)證明:∵四邊形是正方形,∴,.∴.∵?!?∴.∴.∴.(2)證明:∵,∴.∵,∴.∵,平分,∴.∵平分,∴.∵,∴.∴.(3).證明:過點作于點,如圖,∵正方形中,,∴.∵平分,∴.∵,∴.∴.∵,∴.【點睛】本題考查正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù),題目難度較大,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)、勾股定理、角平分線的性質(zhì)、三角函數(shù).7.已知,點是的角平分線上的任意一點,現(xiàn)有一個直角繞點旋轉(zhuǎn),兩直角邊,分別與直線,相交于點,點.(1)如圖1,若,猜想線段,之間的數(shù)量關(guān)系,并說明理由.(2)如圖2,若點在射線上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請說明理由;如不成立,請寫出線段,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點在射線的反向延長線上,且,請直接寫出線段的長度.【答案】(1)詳見解析;(2)詳見解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過點作于點,于點,證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,∴四邊形為矩形.∵是的角平分線,∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過點作于點,于點,∵平分,∴四邊形為正方形,由(1)得:,在和中,∴,∴,∴.(3),∴.∵,∴,∴,∴,的長度為.【點睛】考核知識點:矩形,.8.如圖1,在正方形ABCD中,AD=6,點P是對角線BD上任意一點,連接PA,PC過點P作PE⊥PC交直線AB于E.(1) 求證:PC=PE。(2) 延長AP交直線CD于點F.①如圖2,若點F是CD的中點,求△APE的面積;②若ΔAPE的面積是,則DF的長為 (3) 如圖3,點E在邊AB上,連接EC交BD于點M,作點E關(guān)于BD的對稱點Q,連接PQ,MQ,過點P作PN∥CD交EC于點N,連接QN,若PQ=5,MN=,則△MNQ的面積是 【答案】(1)略;(2)①8,②4或9;(3)【解析】【分析】(1)利用正方形每個角都是90176。,對角線平分對角的性質(zhì),三角形外角等于和它不相鄰的兩個內(nèi)角的和,等角對等邊等性質(zhì)容易得證。(2)作出△ADP和△DFP的高,△PAE的底和高,通過面積法列出方程求解即可。(3)根據(jù)已經(jīng)條件證出△MNQ是直角三角形,計算直角邊乘積的一半可得其面積.【詳解】(1) 證明:∵點P在對角線BD上,∴△ADP≌△CDP,∴AP=CP, ∠DAP =∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90176。,∵∠PEA=∠EBP+∠EPB=45176。+90176?!螧PC=135176?!螧PC,∵∠PAE=90176?!螪AP=90176?!螪CP,∠DCP=∠BPC∠PDC=∠BPC45176。,∴∠PAE=90176。(∠BPC45176。)= 135176。∠BPC,∴∠PEA=∠PAE,∴PC=PE。(2)①如圖2,過點P分別作PH⊥AD,PG⊥CD,垂足分別為H、.∵四邊形ABCD是正方形,P在對角線上,∴四邊形HPGD是正方形,∴PH=PG,PM⊥AB,設PH=PG=a,∵F是CD中點,AD=6,則FD=3,=9,∵==,∴,解得a=2,∴AM=HP=2,MP=MGPG=62=4,又∵PA=PE, ∴AM=EM,AE=4,∵=,②設HP=b,由①可得AE=2b,MP=6b,∴=,解得b=,∵==,∴,∴當b=,DF=4;當b=,DF=9,即DF的長為4或9。(3)如圖,∵E、Q關(guān)于BP對稱,PN∥CD,∴∠1=∠2,∠2+∠3=∠BDC=45176。,∴∠1+∠4=45176。,∴∠3=∠4,易證△PEM≌△PQM, △PNQ≌△PNC,∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC,∴∠6+∠7=90176。,∴△MNQ是直角三角形,設EM=a,NC=b列方程組,可得ab=,∴,【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)等知識;本題綜合性強,有一定難度,熟練掌握正方形的性質(zhì),.9.如圖,已知矩形ABCD中,E是AD上一點,F(xiàn)是AB上的一點,EF⊥EC,且EF=EC.(1)求證:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周長為32cm,求AE的長.【答案】(1)證明見解析;(2)6cm.【解析】分析:(1)根據(jù)EF⊥CE,求證∠AEF=∠ECD.再利用AAS即可求證△AEF≌△DCE.(2)利用全等三角形的性質(zhì),對應邊相等,再根據(jù)矩形ABCD的周長為32cm,即可求得AE的長.詳解:(1)證明:∵EF⊥CE,∴∠FEC=90176。,∴∠AEF+∠DEC=90176。,而∠ECD+∠DEC=90176。,∴∠AEF=∠ECD.
點擊復制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1