freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx精選中考數(shù)學易錯題專題復習平行四邊形及詳細答案(編輯修改稿)

2025-03-30 22:32 本頁面
 

【文章內(nèi)容簡介】 IJ、IH、IF、并說明理由;(3)把(1)中矩形ABCD進行特殊化探究,如圖③,當矩形ABCD滿足AB=AD時,點E是對角線AC上一點,連接DE、EF、DF,使△DEF是等腰直角三角形,、GE、EC三者之間滿足的數(shù)量關系.【答案】(1)①詳見解析;②60176。.(2)IH=FH;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四邊形EBFD是平行四邊形,再證明EB=ED即可.②先證明∠ABD=2∠ADB,推出∠ADB=30176。,延長即可解決問題.(2)IH=FH.只要證明△IJF是等邊三角形即可.(3)結(jié)論:EG2=AG2+CE2.如圖3中,將△ADG繞點D逆時針旋轉(zhuǎn)90176。得到△DCM,先證明△DEG≌△DEM,再證明△ECM是直角三角形即可解決問題.【詳解】(1)①證明:如圖1中,∵四邊形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中, ,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四邊形EBFD是平行四邊形,∵EF⊥BD,OB=OD,∴EB=ED,∴四邊形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90176。,∴∠ADB=30176。,∠ABD=60176。,∴∠ABE=∠EBO=∠OBF=30176。,∴∠EBF=60176。.(2)結(jié)論:IH=FH.理由:如圖2中,延長BE到M,使得EM=EJ,連接MJ.∵四邊形EBFD是菱形,∠B=60176。,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中, ,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60176。,∴△MEJ是等邊三角形,∴MJ=EM=NI,∠M=∠B=60176。在△BIF和△MJI中,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120176。,∴∠MIJ+∠BIF=120176。,∴∠JIF=60176。,∴△JIF是等邊三角形,在Rt△IHF中,∵∠IHF=90176。,∠IFH=60176。,∴∠FIH=30176。,∴IH=FH.(3)結(jié)論:EG2=AG2+CE2.理由:如圖3中,將△ADG繞點D逆時針旋轉(zhuǎn)90176。得到△DCM,∵∠FAD+∠DEF=90176。,∴AFED四點共圓,∴∠EDF=∠DAE=45176。,∠ADC=90176。,∴∠ADF+∠EDC=45176。,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45176。=∠EDG,在△DEM和△DEG中, ,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45176。,AG=CM,∴∠ECM=90176?!郋C2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【點睛】考查四邊形綜合題、矩形的性質(zhì)、正方形的性質(zhì)、菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理等知識,解題的關鍵是學會添加常用輔助線,構(gòu)造全等三角形,學會轉(zhuǎn)化的思想思考問題.7.圖圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.(1)在圖1中畫出等腰直角三角形MON,使點N在格點上,且∠MON=90176。;(2)在圖2中以格點為頂點畫一個正方形ABCD,使正方形ABCD面積等于(1)中等腰直角三角形MON面積的4倍,并將正方形ABCD分割成以格點為頂點的四個全等的直角三角形和一個正方形,且正方形ABCD面積沒有剩余(畫出一種即可).【答案】(1)作圖參見解析;(2)作圖參見解析.【解析】試題分析:(1)過點O向線段OM作垂線,此直線與格點的交點為N,連接MN即可;(2)根據(jù)勾股定理畫出圖形即可.試題解析:(1)過點O向線段OM作垂線,此直線與格點的交點為N,連接MN,如圖1所示;(2)等腰直角三角形MON面積是5,因此正方形面積是20,如圖2所示;于是根據(jù)勾股定理畫出圖3:考點:﹣應用與設計作圖;.8.如圖,正方形ABCD的邊長為8,E為BC上一定點,BE=6,F(xiàn)為AB上一動點,把△BEF沿EF折疊,點B落在點B′處,當△AFB′恰好為直角三角形時,B′D的長為?【答案】或【解析】【分析】分兩種情況分析:如圖1,當∠AB′F=90176。時,此時A、B′、E三點共線,過點B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=,再由勾股定理可求得B′N=,在Rt△CB′N中,由勾股定理得,B′D=;如圖2,當∠AFB′=90176。時,由題意可知此時四邊形EBFB′是正方形,AF=2,過點B′作B′N⊥AD,則四邊形AFB′N為矩形,在Rt△CB′N中,由勾股定理得,B′D=;【詳解】如圖1,當∠AB′F=90176。時,此時A、B′、E三點共線,∵∠B=90176。,∴AE==10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90176。,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,過點B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=,再由勾股定理可求得B′N=,∴AN=B′M=,∴DN=ADAN==,在Rt△CB′N中,由勾股定理得,B′D= = ;如圖2,當∠AFB′=90176。時,由題意可知此時四邊形EBFB′是正方形,∴AF=2,過點B′作B′N⊥AD,則四邊形AFB′N為矩形,∴AN=B′F=6,B′N=AF=2,∴DN=ADAN=2,在Rt△CB′N中,由勾股定理得,B′D= = ;綜上,可得B′D的長為或.【點睛】本題主要考查正方形的性質(zhì)與判定,矩形有性質(zhì)判定、勾股定理、折疊的性質(zhì)等,能正確地畫出圖形并能分類討論是解題的關鍵.9.閱讀下列材料:我們定義:若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,則這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如正方形就是和諧四邊形.結(jié)合閱讀材料,完成下列問題:(1)下列哪個四邊形一定是和諧四邊形  ?。瓵.平行四邊形 B.矩形 C.菱形 D.等腰梯形(2)命題:“和諧四邊形一定是軸對稱圖形”是    命題(填“真”或“假”).(3)如圖,等腰Rt△ABD中,∠BAD=90176。.若點C為平面上一點,AC為凸四邊形ABCD的和諧線,且AB=BC,請求出∠ABC的度數(shù).【答案】(1) C ;(2)∠ABC的度數(shù)為60176?;?0176?;?50
點擊復制文檔內(nèi)容
范文總結(jié)相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1