freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)二輪-平行四邊形-專項培優(yōu)附答案(編輯修改稿)

2025-03-30 22:20 本頁面
 

【文章內(nèi)容簡介】 在射線上,折痕為,點分別落在點,處,若,求的長.【答案】(1)21;(2)畫一畫;見解析;算一算:【解析】【分析】(1)利用平行線的性質(zhì)以及翻折不變性即可解決問題;(2)【畫一畫】,如圖2中,延長BA交CE的延長線由G,作∠BGC的角平分線交AD于M,交BC于N,直線MN即為所求;【算一算】首先求出GD=9,由矩形的性質(zhì)得出AD∥BC,BC=AD=9,由平行線的性質(zhì)得出∠DGF=∠BFG,由翻折不變性可知,∠BFG=∠DFG,證出∠DFG=∠DGF,由等腰三角形的判定定理證出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不變性,可知FB′=FB,由此即可解決問題.【詳解】(1)如圖1所示:∵四邊形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=42176。,由翻折的性質(zhì)可知,∠DBE=∠EBC=∠DBC=21176。,故答案為21.(2)【畫一畫】如圖所示: 【算一算】如3所示:∵AG=,AD=9,∴GD=9,∵四邊形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不變性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=, ∵CD=AB=4,∠C=90176。,∴在Rt△CDF中,由勾股定理得:CF=,∴BF=BCCF=9,由翻折不變性可知,F(xiàn)B=FB′=,∴B′D=DFFB′=.【點睛】四邊形綜合題,考查了矩形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、等腰三角形的判定、平行線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用翻折不變性解決問題.7.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.8.問題情境在四邊形ABCD中,BA=BC,DC⊥AC,過點D作DE∥AB交BC的延長線于點E,M是邊AD的中點,連接MB,ME. 特例探究(1)如圖1,當(dāng)∠ABC=90176。時,寫出線段MB與ME的數(shù)量關(guān)系,位置關(guān)系; (2)如圖2,當(dāng)∠ABC=120176。時,試探究線段MB與ME的數(shù)量關(guān)系,并證明你的結(jié)論; 拓展延伸(3)如圖3,當(dāng)∠ABC=α?xí)r,請直接用含α的式子表示線段MB與ME之間的數(shù)量關(guān)系.【答案】(1)MB=ME,MB⊥ME;(2)ME=MB.證明見解析;(3)ME=MBtan.【解析】【分析】(1)如圖1中,連接CM.只要證明△MBE是等腰直角三角形即可;(2)結(jié)論:EM=MB.只要證明△EBM是直角三角形,且∠MEB=30176。即可;(3)結(jié)論:EM=BM?tan.證明方法類似;【詳解】(1) 如圖1中,連接CM.∵∠ACD=90176。,AM=MD,∴MC=MA=MD,∵BA=BC,∴BM垂直平分AC,∵∠ABC=90176。,BA=BC,∴∠MBE=∠ABC=45176。,∠ACB=∠DCE=45176。,∵AB∥DE,∴∠ABE+∠DEC=180176。,∴∠DEC=90176。,∴∠DCE=∠CDE=45176。,∴EC=ED,∵MC=MD,∴EM垂直平分線段CD,EM平分∠DEC,∴∠MEC=45176。,∴△BME是等腰直角三角形,∴BM=ME,BM⊥EM.故答案為BM=ME,BM⊥EM.(2)ME=MB.證明如下:連接CM,如解圖所示.∵DC⊥AC,M是邊AD的中點,∴MC=MA=MD.∵BA=BC,∴BM垂直平分AC.∵∠ABC=120176。,BA=BC,∴∠MBE=∠ABC=60176。,∠BAC=∠BCA=30176。,∠DCE=60176。.∵AB∥DE,∴∠ABE+∠DEC=180176。,∴∠DEC=60176。,∴∠DCE=∠DEC=60176。,∴△CDE是等邊三角形,∴EC=ED.∵MC=MD,∴EM垂直平分CD,EM平分∠DEC,∴∠MEC=∠DEC=30176。,∴∠MBE+∠MEB=90176。,即∠BME=90176。.在Rt△BME中,∵∠MEB=30176。,∴ME=MB.(3) 如圖3中,結(jié)論:EM=BM?tan.理由:同法可證:BM⊥EM,BM平分∠ABC,所以EM=BM?tan.【點睛】本題考查四邊形綜合題、等腰直角三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)、等腰三角形的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運用所學(xué)知識解決問題.9.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.【答案】(1)見解析;(2).【解析】【分析】(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90176。.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識點,能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.10.(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為   ;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60176。,得到正方形AB39。C39。D39。,請直接寫出BD39。平方的值.【答案】(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】【分析】
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1