freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式(一)教案5則范文(留存版)

  

【正文】 六、教學(xué)過(guò)程設(shè)計(jì)師生活動(dòng)設(shè)計(jì)意圖多項(xiàng)式與多項(xiàng)式的乘法法則內(nèi)容。學(xué)生在做題時(shí),不要鼓勵(lì)他們直接套用公式,而應(yīng)讓學(xué)生理解每一步的運(yùn)算理由。:2圖(1),可以看出大正方形的邊長(zhǎng)是a+b,它是由兩個(gè)小正方形和兩個(gè)矩形組成,?所以大正方形的面積等于這四個(gè)圖形的面積之和。教學(xué)方法:探索討論、歸納總結(jié)。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2.(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2=a2-2ab+b2. 兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍,即學(xué)生利用多項(xiàng)式與多項(xiàng)式相乘的法則進(jìn)行計(jì)算,觀察計(jì)算結(jié)果,尋找一般性的結(jié)論,并進(jìn)行歸納,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.這里是對(duì)前邊進(jìn)行的運(yùn)算的復(fù)習(xí),目的是讓學(xué)生通過(guò)觀察、歸納,鼓勵(lì)他們發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn),如公式左右邊的特征,便于進(jìn)一步應(yīng)用公式計(jì)算公式的推導(dǎo)既是對(duì)上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué) 教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 3.歸納完全平方公式的特征:(1)左邊為兩個(gè)數(shù)的和或差的平方;(2)右邊為兩個(gè)數(shù)的平方和再加或減這兩個(gè)數(shù)的積的2倍. 4.【例1】運(yùn)用完全平方公式計(jì)算:⑴ ; ⑵ 【點(diǎn)撥】展開(kāi)后的式子有三項(xiàng),.利用完全平方公式計(jì)算:(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;解析:(1)題可轉(zhuǎn)化為(2y-x)2或(x-2y)2,再運(yùn)用完全平方公式;(2)題可以轉(zhuǎn)化為(x+y)2,利用和的完全平方公式;(3)題利用加法結(jié)合律變形為[(x+y)-z]2,或[x+(y-z)][(x-z)+y]2,再用完全平方公式計(jì)算; 思考⑴(a+b)2與(-a-b)2相等嗎?為什么? ⑵(a-b)2與(b-a)2相等嗎?為什么? ⑶(a-b)2與a2-b2相等嗎?為什么? 6.添括號(hào):∵4+5+2與4+(5+2)的值相等。情感態(tài)度與價(jià)值觀對(duì)學(xué)生觀察能力、概括能力、語(yǔ)言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。 (2)(x-1)2;(3)(a+b)2。2。3,所以x2+6x+9=(x+3) 。5x2把下列各式分解因式:(1)a2-24a+144; (2)4a2b2+4ab+1;(3)19x2+2xy+9y2; (4)14a2-ab+b2。五、作業(yè)把下列各式分解因式:1。利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問(wèn)題,從中培養(yǎng)學(xué)生的思維品質(zhì)。(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、不等式、函數(shù)等進(jìn)行描述。⑥ (4x5y)2 =______________。二、情境引入活動(dòng)內(nèi)容:提出問(wèn)題:一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。(x—2y)2等于;答案:x2—8xy+4y2解析:解答:(x—2y)2=x2—8xy+4y2分析:根據(jù)完全平方公式與積的乘方法則可完成此題。即∠1+∠2=90176。,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。教學(xué)難點(diǎn):消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”。練習(xí):第88頁(yè)練一練第2題第四篇:完全平方公式教案學(xué)習(xí)周報(bào)專(zhuān)業(yè)輔導(dǎo)學(xué)生學(xué)習(xí)完全平方公式在代數(shù)、幾何中的兩點(diǎn)運(yùn)用,在一些代數(shù)、幾何問(wèn)題中,還會(huì)利用其進(jìn)行解題,在公式的一些使用過(guò)程中,還結(jié)合了整體思考的數(shù)學(xué)思想,、例1 已知a2+b2=1,ab=分析:要求(a+b)4,直接求12,求(a+b),的值有一定的困難,因而可利用整體思想,設(shè)法求出(a+b)2,結(jié)合題目條件a2+b2=1,:把a(bǔ)b=a2ab+b2212=兩邊同時(shí)平方,得34又因?yàn)閍2+b2=1,所以2ab=a+2ab+b4222=1+491634 即(a+b)=74所以(a+b)=.22例3 已知x3x+1=0,求(1)x+1x2;(2)x+:觀察所求代數(shù)式的特征,x+21x2可由x++1=0求出代數(shù)式x+,:把x3x+1=0兩邊同時(shí)除以x,得x3+1x=0,即x+1x=+21x=3兩邊同時(shí)平方,得 1x+1x2x+2x=9,即 x+21x2=7學(xué)習(xí)周報(bào)專(zhuān)業(yè)輔導(dǎo)學(xué)生學(xué)習(xí)再把x2+421x2=7兩邊同時(shí)平方,得 1x2x+2x+1x21x4=49,即x+441x144=47.=(1)x2+(2)x+=7;x二、利用完全平方式判斷三角形形狀例4 已知三角形的三邊a,b,c滿(mǎn)足a2+b2+c2abacbc=0,:判斷形狀的三角形一般都是特殊三角形,因而可把目標(biāo)定為證明邊相等,聯(lián)想到完全平方式的非負(fù)性,:由a2+b2+c2abacbc=0兩邊同時(shí)乘以2,整理可得(a22ab+b22)+(a22ac+c22)+(b22bc+c2)=0所以(ab)+(ac)+(bc)=02因?yàn)?ab)≥0,(ac)≥0,(bc)≥0 222所以(ab)=0,(ac)=0,(bc)=0 222所以a=b,a=c,b=c 即 a=b= 已知a,b,c是DABC的三邊長(zhǎng),且a+2b+c2b(a+c)=0,:與例4相類(lèi)似,也是利用完全平方公式將條件進(jìn)行變形,:由a+2b+c2b(a+c)=0變形,得 222(a22ab+b22)+(b22bc+c2)=02所以(ab)+(bc)=0因?yàn)?ab)≥0,(bc)≥0 學(xué)習(xí)周報(bào)專(zhuān)業(yè)輔導(dǎo)學(xué)生學(xué)習(xí)所以(ab)=0,(bc)=0 22所以a=b,b=c 即 a=b=c 第五篇:(一)教案完全平方公式一、基本訓(xùn)練,鞏固舊知:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的,即(a+b)(ab)=,這個(gè)公式叫做 (1)(m+5n)(m5n)(2)(3x1)(3x+1)(3)(y+3x)(3xy)(4)(2+ab)(2+ab)二、創(chuàng)設(shè)情境,總結(jié)公式1做一做 填空:(1)(a+b)(a–b)=(2)(a+b)2 =(3)(a–b)2 =根據(jù)上面式子填空:(1)a 2b 2 =(2)a2–2ab+b2=(3)a 2 +2ab+b2=結(jié)論:形如a 2 +2ab+b2與a 2–2ab+b 2 的式子稱(chēng)為完全平方式. 口訣:首平方、尾平方,首尾相乘兩倍在中央;完全平方公式a 2 –2ab+b2 =(a–b)2a 2 +2ab+b2 =(a+b)2 2 辯一辯:下列哪些式子是完全平方式?如果是,就把它們進(jìn)行因式分解.(1)x 2–4y2(2)x 2 +4xy–4y 2(3)4m2 –6mn+9n 2(4)m2 +6mn+9n2三﹑合作探究:+14x+49(m+n)2 (m++6axy+3ay2n)+1246。掌握運(yùn)用完全平方公式分解因式的方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)教學(xué)方法:對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀教師活動(dòng):學(xué)生活動(dòng)復(fù)習(xí)鞏固:上節(jié)課我們學(xué)習(xí)了運(yùn)用平方差公式分解因式,請(qǐng)同學(xué)們先閱讀課本87—88頁(yè),看看你能有什么發(fā)現(xiàn)?新課講解:(投影)我們把形如a2+2ab+b2與a22ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。兩數(shù)和的平方。2. 197 師:要利用完全平方公式計(jì)算,則要?jiǎng)?chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,:: =(100+2) =(2003) =100 +2 lOO 2+2, =200 2 2O0 3十3 ,=10000+400+4 =400001200+9 =10404 =38809 :1.(x3) x2.(2a+b )(2ab+ )師生共同分析:1中(x3) ,板書(shū)如下:解:1. (x3) x = x +6x+9x =6x+9師問(wèn):此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,:分小組討論第(2),:2. (2a+b )(2ab+ )=[2a+(b )][2a(b )]=(2a) (b ) =4a (b3b+ )=4a b +3b三、試一試計(jì)算:1. (a+b+c)2. (a+b) 師生共同分析:對(duì)于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,(a+b+c) =[a+(b+c)] 對(duì)于(2)可化為(a+b) =(a+b)(a+b) .學(xué)生動(dòng)筆:在練習(xí)本上解答。學(xué)習(xí)過(guò)程:(一)自主探索計(jì)算:(1)(a+b)2 (2)(ab)2你能用文字?jǐn)⑹鲆陨系慕Y(jié)論嗎?(二)合作交流:你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學(xué)交流。三、學(xué)習(xí)難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)方法:探索討論、歸納總結(jié)。② (yx)2 =_______________。學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。(1)(mn-1) 2; (2)7am-1(a-1) 2。首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個(gè)完全平方式,如果這個(gè)多項(xiàng)式是一個(gè)完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解。2。例1 把25x4+10x2+1分解因式。問(wèn):下列多項(xiàng)式是否為完全平方式?為什么?(1)x2+6x+9; (2)x2+xy+y2;(3)25x4-10x2+1; (4)16a2+1。難點(diǎn):靈活運(yùn)用完全平方公式公解因式。利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點(diǎn)。二、學(xué)情分析學(xué)生剛學(xué)過(guò)多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識(shí)結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時(shí)要循序漸進(jìn)。232。教學(xué)目標(biāo):知識(shí)目標(biāo):推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算;了解完全平方公式的幾何背景。231。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。計(jì)算練習(xí)(1)課本110頁(yè)第一題(2) (x6)2 (y-5)2四、課堂小結(jié):應(yīng)用完全平方公式應(yīng)注意什么?在解題過(guò)程中要準(zhǔn)確確定a和b,對(duì)照公式原形的兩邊, 做到不丟項(xiàng)、不弄錯(cuò)符號(hào)、2ab時(shí)不能少乘以2。理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式。請(qǐng)同學(xué)們用箭頭表示完全平方公式中的a,b與多項(xiàng)式9x2+6xy+y2中的對(duì)應(yīng)項(xiàng),其中a=?b=?2ab=?答:完全平方公式為:其中a=3x,b=y,2ab=2m+m2)= (4-m)2。3。2。用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí)。五、鞏固練習(xí):下列各式中哪些可以運(yùn)用完全平方公式計(jì)算。完全平方公式教案8學(xué)習(xí)目標(biāo):會(huì)推導(dǎo)完全平方公式,并能用幾何圖形解釋公式。完全平方公式的結(jié)構(gòu)特征:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2左邊是 形式,右邊有三項(xiàng),其中兩項(xiàng)是 形式,另一項(xiàng)是注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號(hào)表示為:(□177?!皢?wèn)題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開(kāi)教學(xué)。[作業(yè)]P34隨堂練習(xí)P36習(xí)題完全平方公式教案13教學(xué)過(guò)程一、議一議探索單項(xiàng)式除以單項(xiàng)式法則(
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1