freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式(一)教案5則范文-全文預(yù)覽

2024-11-04 22:29 上一頁面

下一頁面
  

【正文】 (3)1-( )+m2/9=( )2。解法2 先提出 ,則1- m+ = (16-8m+m2)= (42-2問:請同學(xué)分析這個多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?答:這個多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“ ”是 的平方,第二項(xiàng)“- m”是1與m/4的積的2倍的相反數(shù),因此這個多項(xiàng)式是完全平方式,可以用完全平方公式分解因式。解 25x4+10x2+1=(5x2)2+2y。(4)不是完全平方式。(3)是完全平方式。x問:具備什么特征的多項(xiàng)是完全平方式?答:一個多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負(fù),像這樣的式子就是完全平方式。二、新課和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?答:有完全平方公式。我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法。教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):運(yùn)用完全平方式分解因式。完全平方公式教案3教學(xué)目標(biāo)1。2ab+“首平方,末平方,首末兩倍中間放”.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第12題【類型二】 構(gòu)造完全平方式如果36x2+(+1)x+252是一個完全平方式,求的值.解析:先根據(jù)兩平方項(xiàng)確定出這兩個數(shù),再根據(jù)完全平方公式確定的值.解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=177。完全平方公式教案21.能根據(jù)多項(xiàng)式的乘法推導(dǎo)出完全平方公式;(重點(diǎn))2.理解并掌握完全平方公式,并能進(jìn)行計算.(重點(diǎn)、難點(diǎn))一、情境導(dǎo)入計算:(1)(x+1)2。利用不同的的方法來推導(dǎo)完全平方公式,讓學(xué)生認(rèn)知數(shù)學(xué)中的不同解題方法。完全平方公式的推導(dǎo)利用多項(xiàng)式與多項(xiàng)式的乘法法則和幾何法推導(dǎo)完全平方(和)公式附:有簡單的填空練習(xí)利用多項(xiàng)式乘法則和換元法推導(dǎo)完全平方 (差)公式(a+b)2=a2+2ab+b2(ab)2=a22ab+b2二、總結(jié)完全平方公式的特點(diǎn)介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。五、教法學(xué)法多媒體輔助教學(xué),將知識形象化、生動化,激發(fā)學(xué)生的興趣。過程與方法經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推理能力。作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。師生行為 的思想方法:特例—?dú)w納—猜想—驗(yàn)證一用數(shù)學(xué)符號表示. 的設(shè)置是由淺入深,讓 每個學(xué)生感到學(xué)有所成,感,親身 ,讓學(xué)生掌握。部分學(xué)生板演,然后學(xué)生交流分析過程:此題需靈活運(yùn)用完全平方公式。課后反思:《完全平方公式》教案數(shù)學(xué)教研組:岳文斌第二篇:完全平方公式教案一、復(fù)習(xí)舊知探究,計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?(1)(p+1)2 =(p+1)(p+1)=_________;(2)(m+2)2=(m+2)(m+2)=_________;(3)(p-1)2 =(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.二、探究新知:(a+b)2 和(a-b)2 ;并說明發(fā)現(xiàn)的規(guī)律。3248。為什么?你能繼續(xù)做下去嗎?(二)運(yùn)用公式例:應(yīng)用完全平方公式計算:(1)(2a+2b)2(2)(2x3y)2(3)992(4)230。(1)(2)之間只差 一個符號。教學(xué)難點(diǎn):會用完全平方公式進(jìn)行運(yùn)算。第一篇:完全平方公式(一)教案167。教學(xué)重點(diǎn):弄清完全平方公式的來源及其結(jié)構(gòu)特點(diǎn),能用自己的語言說明公式及其特點(diǎn);會用完全平方公式進(jìn)行運(yùn)算。教學(xué)過程:第一課時一、提出問題,學(xué)生自學(xué)問題:根據(jù)乘方的定義,我們知道:a2=a〃a,那么(a+b)2 應(yīng) 該寫成什么樣的形式呢?1.(a+b)2的運(yùn)算結(jié)果有什么規(guī)律?計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;(2)(p1)2=(p1)(p1)=________;(m2)=_______;學(xué)生探究得到結(jié)果:(1)(p+1)2=(p+1)(p+1)=p2+2p+1 22(m+2)=(m+2)(m+2)= m+4m+4(2)(p1)2=(p1)(p1)= p22p+1(m2)2=(m2)(m2=m24m+4分析推廣:結(jié)果中有兩個數(shù)的平方和,而2p=2〃p〃1 4m=2〃m〃2,恰好是兩個數(shù)乘積的二倍。問:(a—b)2=[a+(—b)]2。x+y247。三、作業(yè)安排:43頁第2題。教學(xué)程序及教學(xué)內(nèi)容學(xué)生分組討論,合作交流,歸納完全平方公式的特征。.學(xué)生分組討論,最后總結(jié)。本節(jié)課通過學(xué)生合作學(xué)習(xí),利用多項(xiàng)式相乘法則和圖形解釋而得到完全平方公式,進(jìn)而理解和運(yùn)用完全平方公式,對以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。教學(xué)難點(diǎn)完全平方公式結(jié)構(gòu)特點(diǎn)及其應(yīng)用。多項(xiàng)式與多項(xiàng)式的乘法練習(xí)。助記口訣復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則為新課的學(xué)習(xí)做準(zhǔn)備。強(qiáng)調(diào)應(yīng)用完全平方公式解題的注意點(diǎn)和助記口訣,提高學(xué)生解決問題的能力和解題的準(zhǔn)確率。b)2=a2177。 (2)1022.解析:(1)把99寫成(100-1)的形式,然后利用完全平方公式展開計算.(2)可把102分成100+2,然后根據(jù)完全平方公式計算.解:(1)992=(100-1)2=1002-2100+12=10000-200+1=9801;(2)1022=(100+2)2=1002+21002+4=10404.方法總結(jié):利用完全平方公式計算一個數(shù)的平方時,先把這個數(shù)寫成整十或整百的數(shù)與另一個數(shù)的和或差,然后根據(jù)完全平方公式展開計算.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第13題【類型四】 靈活運(yùn)用完全平方公式求代數(shù)式的值若(x+)2=9,且(x-)2=1.(1)求1x2+12的值;(2)求(x2+1)(2+1)的值.解析:(1)先去括號,再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案.解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2222=54;(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-22+1=10.方法總結(jié):所求的展開式中都含有x或x+時,我們可以把它們看作一個整體代入到需要求值的代數(shù)式中,整體求解.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第9題【類型五】 完全平方公式的幾何背景我們已經(jīng)接觸了很多代數(shù)恒等式,知道可以用一些硬紙片拼成的圖形面積來解釋一些代數(shù)恒等式.例如圖甲可以用來解釋(a+b)2-(a-b)2=,驗(yàn)證了一個恒等式,此等式是( )A.a(chǎn)2-b2=(a+b)(a-b)B.(a-b)(a+2b)=a2+ab-2b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b2解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+.方法總結(jié):通過幾何圖形面積之間的數(shù)量關(guān)系對完全平方公式做出幾何解釋.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第7題【類型六】 與完全平方公式有關(guān)的探究問題下表為楊輝三角系數(shù)表,它的作用是指導(dǎo)讀者按規(guī)律寫出形如(a+b)n(n為正整數(shù))展開式的系數(shù),請你仔細(xì)觀察下表中的規(guī)律,填出(a+b)6展開式中所缺的系數(shù).(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項(xiàng)展開式的系數(shù)除首尾兩項(xiàng)都是1外,其余各項(xiàng)系數(shù)都等于(a+b)n-1的相鄰兩個系數(shù)的和,由此可得(a+b)4的各項(xiàng)系數(shù)依次為1;(a+b)5的各項(xiàng)系數(shù)依次為1;因此(a+b)6的系數(shù)分別為111,故填20.方法總結(jié):對于規(guī)律探究題,讀懂題意并根據(jù)所給的式子尋找規(guī)律,是快速解題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第10題三、板書設(shè)計1.完全平方公式兩個數(shù)的和(或差)的平方,等于這兩個數(shù)的平方和加(或減)這兩個數(shù)乘積的2倍.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.2.完全平方公式的運(yùn)用本節(jié)課通過多項(xiàng)式乘法推導(dǎo)出完全平方公式,讓學(xué)生自己總結(jié)出完全平方公式的特征,注意不要出現(xiàn)如下錯誤:(a+b)2=a2+b2,(a-b)2=a2-,可采用如下口訣:首平方,尾平方,乘積兩倍在中央.教學(xué)中,教師可通過判斷正誤等習(xí)題強(qiáng)化學(xué)生對完全平方公式的理解記憶。3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.4.通過運(yùn)用公式法分解因式的教學(xué),使學(xué)生進(jìn)一步體會“把一個代數(shù)式看作一個字母”的換元思想。問:什么叫把一個多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?答:把一個多項(xiàng)式化成幾個整式乘積形式,叫做把這個多項(xiàng)式因式分解。解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)(2) 16m4-n4=(4m2)2-(n2)2=(4m2+n2)(4m2-n2)=(4m2+n2)(2m+n)(2m-n)。這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解。運(yùn)用這兩個式子,可以把形式是完全平方式的多項(xiàng)式分解因式。因?yàn)閤2與9分別是x的平方與3的平方,6x=2因?yàn)榈谌糠直仨毷?xy。1,所以25x -10x +1=(5x-1) 。(3x)所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式。例2 把1- m+ 分解因式。 +( )2=(1- )2。三、課堂練習(xí)(投影)1。(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;(4)9m2+12m+4; (5)1-a+a2/4。(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。(3)是完全平方式,a24ab+4b2=(a-2b)2。(1)(a-12) 2; (2)(2ab+1) 2;(3)(13x+3y) 2; (4)(12a-b)2。2。2。(1) x -4x; (2)a5+a4+ a3。(1)(5m-8) 2; (2)(2a+9) 2;(3)(2p-5q) 2; (4)(4-xy) 2;(5)(ab-2) 2; (6)(5a2-4b2) 2。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。本節(jié)課要求學(xué)生掌握完全平方公式的特點(diǎn)和靈活運(yùn)用公式把多項(xiàng)式進(jìn)行因式分解的方法。首先提出等號左邊的兩個相乘的多項(xiàng)式和等號右邊得出的三項(xiàng)有什么關(guān)系。學(xué)情分析在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:①同類項(xiàng)的定義。教學(xué)目標(biāo)(一)教學(xué)目標(biāo):經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。(1)原式的特點(diǎn)。[學(xué)生回答]總結(jié)完全平方公式的語言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。④ (3a2)2 =_______________。⑧ ()2 =_____________.〈四〉、[學(xué)生小結(jié)]你認(rèn)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1