freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

微積分及其意義(留存版)

2025-09-19 06:33上一頁面

下一頁面
  

【正文】 起來的,最初牛頓應(yīng)用微積分學(xué)及微分方程為了從萬有引力定律導(dǎo)出了開普勒行星運(yùn)動(dòng)三定律。其中:[F(x) + C]39。多元微分同理,當(dāng)自變量為多個(gè)時(shí),可得出多元微分得定義。 本來從廣義上說,數(shù)學(xué)分析包括微積分、函數(shù)論等許多分支學(xué)科,但是現(xiàn)在一般已習(xí)慣于把數(shù)學(xué)分析和微積分等同起來,數(shù)學(xué)分析成了微積分的同義詞,一提數(shù)學(xué)分析就知道是指微積分。 微積分學(xué)的創(chuàng)立,極大地推動(dòng)了數(shù)學(xué)的發(fā)展,過去很多初等數(shù)學(xué)束手無策的問題,運(yùn)用微積分,往往迎刃而解,顯示出微積分學(xué)的非凡威力。第四類問題是求曲線長(zhǎng)、曲線圍成的面積、曲面圍成的體積、物體的重心、一個(gè)體積相當(dāng)大的物體作用于另一物體上的引力。比如,子彈飛出槍膛的瞬間速度就是微分的概念,子彈每個(gè)瞬間所飛行的路程之和就是積分的概念。當(dāng)|Δx|很小時(shí),|Δydy|比|Δy|要小得多(高階無窮小),因此在點(diǎn)M附近,我們可以用切線段來近似代替曲線段。把這一類問題的思想方法抽象出來,便得定積分的概念:對(duì)于定義在[a,b〕上的函數(shù)y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個(gè)與分劃及ζi∈[xi1,xi〕的取法都無關(guān)的常數(shù)I,使得,其中則稱I為f(x)在[a,b〕上的定積分,表為即 稱[a,b〕為積分區(qū)間,f(x)為被積函數(shù),a,b分別稱為積分的上限和下限。(x)=f(x)那么∫f(x) dx (上限a下限b)=F(a)F(b)牛頓萊布尼茲公式用文字表述,就是說一個(gè)定積分式的值,就是上限在原函數(shù)的值與下限在原函數(shù)的值的差。由定義可知:求函數(shù)f(x)的不定積分,就是要求出f(x)的所有的原函數(shù),由原函數(shù)的性質(zhì)可知,只要求出函數(shù)f(x)的一個(gè)原函數(shù),再加上任意的常數(shù)C,就得到函數(shù)f(x)的不定積分。勒貝格積分的出現(xiàn)源于概率論等理論中對(duì)更為不規(guī)則的函數(shù)的處理需要。因此,導(dǎo)數(shù)也叫做微商。=f(x),則為導(dǎo)數(shù),書寫成dy=f(x)dx,則為微分。于是函數(shù)y = f(x)的微分又可記作dy = f39。比如一個(gè)長(zhǎng)方體狀的游泳池的容積可以用長(zhǎng)寬高求出。積分一般分為不定積分、定積分和微積分三種設(shè)F(x)是函數(shù)f(x)的一個(gè)原函數(shù),我們把函數(shù)f(x)的所有原函數(shù)F(x)+C(C為任意常數(shù))叫做函數(shù)f(x)的不定積分。它們看起來沒有任何的聯(lián)系,那么為什么定積分寫成積分的形式呢?定積分與積分看起來風(fēng)馬牛不相及,但是由于一個(gè)數(shù)學(xué)上重要的理論的支撐,使得它們有了本質(zhì)的密切關(guān)系。如果F(x)是f(x)的一個(gè)原函數(shù),則 ,其中C為任意常數(shù)?!鱔=dy,則dy=f′(X)dX。 微積分學(xué)是微分學(xué)和積分學(xué)的總稱。歸結(jié)起來,大約有四種主要類型的問題:第一類是研究運(yùn)動(dòng)的時(shí)候直接出現(xiàn)的,也就是求即時(shí)速度的問題。1686年,萊布尼茨發(fā)表了第一篇積分學(xué)的文獻(xiàn)。微積分是高等數(shù)學(xué)的主要分支,不只是局限在解決力學(xué)中的變速問題,它馳騁在近代和現(xiàn)代科學(xué)技術(shù)園地里,建立了數(shù)不清的豐功偉績(jī)。因此,導(dǎo)數(shù)也叫做微商。一階微分與高階微分函數(shù)一階導(dǎo)數(shù)對(duì)應(yīng)的微分稱為一階微分。一元微分定義: 設(shè)函數(shù)y = f(x)在某區(qū)間內(nèi)有定義,x0及x0 + Δx在此區(qū)間內(nèi)。 直到19世紀(jì)初,法國(guó)科學(xué)學(xué)院的科學(xué)家以柯西為首,對(duì)微積分的理論進(jìn)行了認(rèn)真研究,建立了極限理論,后來又經(jīng)過德國(guó)數(shù)學(xué)家維爾斯特拉斯進(jìn)一步的嚴(yán)格化,使極限理論成為了微積分的堅(jiān)定基礎(chǔ)。 牛頓在1671年寫了《流數(shù)法和無窮級(jí)數(shù)》,這本書直到1736年才出版,它在這本書里指出,變量是由點(diǎn)、線、面的連續(xù)運(yùn)動(dòng)產(chǎn)生的,否定了以前自己認(rèn)為的變量是無窮小元素的靜止集合。 公元前三世紀(jì),古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1