freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教案及擴(kuò)展資料(專業(yè)版)

  

【正文】 (a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2.(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2=a2-2ab+b2. 兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍,即學(xué)生利用多項(xiàng)式與多項(xiàng)式相乘的法則進(jìn)行計(jì)算,觀察計(jì)算結(jié)果,尋找一般性的結(jié)論,并進(jìn)行歸納,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.這里是對(duì)前邊進(jìn)行的運(yùn)算的復(fù)習(xí),目的是讓學(xué)生通過(guò)觀察、歸納,鼓勵(lì)他們發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn),如公式左右邊的特征,便于進(jìn)一步應(yīng)用公式計(jì)算公式的推導(dǎo)既是對(duì)上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué) 教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 3.歸納完全平方公式的特征:(1)左邊為兩個(gè)數(shù)的和或差的平方;(2)右邊為兩個(gè)數(shù)的平方和再加或減這兩個(gè)數(shù)的積的2倍. 4.【例1】運(yùn)用完全平方公式計(jì)算:⑴ ; ⑵ 【點(diǎn)撥】展開(kāi)后的式子有三項(xiàng),.利用完全平方公式計(jì)算:(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;解析:(1)題可轉(zhuǎn)化為(2y-x)2或(x-2y)2,再運(yùn)用完全平方公式;(2)題可以轉(zhuǎn)化為(x+y)2,利用和的完全平方公式;(3)題利用加法結(jié)合律變形為[(x+y)-z]2,或[x+(y-z)][(x-z)+y]2,再用完全平方公式計(jì)算; 思考⑴(a+b)2與(-a-b)2相等嗎?為什么? ⑵(a-b)2與(b-a)2相等嗎?為什么? ⑶(a-b)2與a2-b2相等嗎?為什么? 6.添括號(hào):∵4+5+2與4+(5+2)的值相等。完全平方公式結(jié)構(gòu)的認(rèn)知及正確應(yīng)用.四、教學(xué)設(shè)計(jì)分析本節(jié)課設(shè)計(jì)了十一個(gè)教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問(wèn)題——驗(yàn)證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進(jìn)一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí).第一環(huán)節(jié):學(xué)生練習(xí)、暴露問(wèn)題活動(dòng)內(nèi)容:計(jì)算:(a+2)2設(shè)想學(xué)生的做法有以下幾種可能:①(a+2)2=a2+22②(a+2)2=a2+2a+22③正確做法。、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:(a+b)2=a2+2ab+b2;(ab)2=a22ab+b2.,解決問(wèn)題:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)(m+n)2=, (mn)2=,(m+n)2=, (mn)2=,①(x+y)2=。2教學(xué)目標(biāo):會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算;了解(a+b)2=a2+2ab+b2的幾何背景。即可.證明: ∵OE平分∠AOB,∴∠1=∠AOB,同理∠2=∠BOC,∴∠1+∠2=(∠AOB+∠BOC)=∠AOC=90176。(3a—4b)2等于;答案:9a2—24ab+16b2解析:解答:(3a—4b)2=9a2—24ab+16b2分析:根據(jù)完全平方公式可完成此題。用不同的形式表示實(shí)驗(yàn)田的總面積,并進(jìn)行比較。⑦ (+n)2 =___________。(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。2。(1)a2+8a+16; (2)1-4t+4t2;(3)m2-14m+49; (4)y2+y+1/4。答案:1。1+12=(5x2+1)2。(2)不是完全平方式。把下列各式分解因式:(1)ax4-ax2 (2)16m4-n4。 (4)(a-b)2.由上述計(jì)算,你發(fā)現(xiàn)了什么結(jié)論?二、合作探究探究點(diǎn):完全平方公式【類型一】 直接運(yùn)用完全平方公式進(jìn)行計(jì)算利用完全平方公式計(jì)算:(1)(5-a)2;(2)(-3-4n)2;(3)(-3a+b)2.解析:直接運(yùn)用完全平方公式進(jìn)行計(jì)算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3-4n)2=92+24n+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法總結(jié):完全平方公式:(a177。四、教學(xué)重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)完全平方公式的推導(dǎo)過(guò)程;結(jié)構(gòu)特點(diǎn)與公式的應(yīng)用。強(qiáng)調(diào)應(yīng)用完全平方公式解題的注意點(diǎn)和助記口訣,提高學(xué)生解決問(wèn)題的能力和解題的準(zhǔn)確率。問(wèn):什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解。因?yàn)閤2與9分別是x的平方與3的平方,6x=2所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式。(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;(4)9m2+12m+4; (5)1-a+a2/4。2。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。教學(xué)目標(biāo)(一)教學(xué)目標(biāo):經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。④ (3a2)2 =_______________。右邊是兩數(shù)的平方差。已知(a+b)2=24,(a—b)2=20,求:(1)ab的值是多少?(2)a2+b2的值是多少?已知2(x+y)=—6,xy=1,求代數(shù)式(x+2)—(3xy—y)的值。利用完全平方公式計(jì)算:(1)(x+6)2 (2)(a+2b)2 (3)(3st)2[來(lái)源:](四)鞏固練習(xí)利用完全平方公式計(jì)算:A組:(1)( x+ y)2 (2)(2m+5n)2(3)(2a+5b)2 (4)(4p2q)2B組:(1)( x y2) 2 (2)()2(3)( a+5b)2 (4)( x y)2C組:(1)1012 (2)542 (3)9972(五)小結(jié)與反思我的收獲:我的疑惑:(六)達(dá)標(biāo)檢測(cè)(ab)2=a2+b2+ .(a+2b)2= .如果(x+4)2=x2+kx+16,那么k= .計(jì)算:(1)(3m )2 (2)(x21)2(2)(ab)2 (4)( s+ t)2完全平方公式教案9教學(xué)建議(一)教材分析知識(shí)結(jié)構(gòu)重點(diǎn)、難點(diǎn)分析重點(diǎn):真命題的證明步驟與格式.命題的證明步驟與格式是本節(jié)的主要內(nèi)容,是學(xué)習(xí)數(shù)學(xué)必具備的能力,在今后的學(xué)習(xí)中將會(huì)有大量的證明問(wèn)題;另一方面它還體現(xiàn)了數(shù)學(xué)的邏輯性和嚴(yán)謹(jǐn)性.難點(diǎn):推論證明的思路和方法.因?yàn)樗w現(xiàn)了學(xué)生的抽象思維能力,由于學(xué)生對(duì)邏輯的理解不深刻,往往找不出最優(yōu)的思維切入點(diǎn),證明的盲目性很大,因此對(duì)學(xué)生證明的思路和方法的訓(xùn)練是教學(xué)的難點(diǎn).(二)教學(xué)建議四個(gè)注意(1)注意:①公理是通過(guò)長(zhǎng)期實(shí)踐反復(fù)驗(yàn)證過(guò)的,不需要再進(jìn)行推理論證而都承認(rèn)的真命題;②公理可以作為判定其他命題真假的根據(jù).(2)注意:定理都是真命題,但真命題不一定都是定理.一般選擇一些最基本最常用的真命題作為定理,可以以它們?yōu)楦鶕?jù)推證其他命題.這些被選作定理的真命題,在教科書(shū)中是用黑體字排印的.(3)注意:在幾何問(wèn)題的研究上,必須經(jīng)過(guò)證明,才能作出真實(shí)可靠的判斷.如“兩直線平行,同位角相等”這個(gè)命題,如果只采用測(cè)量的方法.只能測(cè)量有限個(gè)兩平行直線的同位角是相等的.但采用推理方法證明兩平行直線的同位角相等,那么就可以確信任意兩平行直線的同位角相等.(4)注意:證明中的每一步推理都要有根據(jù),不能“想當(dāng)然”.①論據(jù)必須是真命題,如:定義、公理、已經(jīng)學(xué)過(guò)的定理和巳知條件;②論據(jù)的真實(shí)性不能依賴于論證的真實(shí)性;③論據(jù)應(yīng)是論題的充足理由.逐步滲透數(shù)學(xué)證明的思想:(1)加強(qiáng)數(shù)學(xué)推理(證明)的語(yǔ)言訓(xùn)練使學(xué)生做到,能用準(zhǔn)確的語(yǔ)言表述學(xué)過(guò)的概念和命題,即進(jìn)行語(yǔ)言準(zhǔn)確性訓(xùn)練;能學(xué)會(huì)一些基本的推理論證語(yǔ)言,如“因?yàn)椤?,所以……”句式,“如果……,那么……”句式等等;提高符?hào)語(yǔ)言的識(shí)別和表達(dá)能力,例如,把要證明的命題結(jié)合圖形,用已知,求證的形式寫(xiě)出來(lái).(2)提高學(xué)生的“圖形”能力,包括利用大綱允許的工具畫(huà)圖(垂線、平行線)的能力和在對(duì)要證命題的理解(如分清題設(shè)、結(jié)論)的基礎(chǔ)上,畫(huà)出要證明的命題的圖形的能力,后一點(diǎn)尤其重要,一般通過(guò)圖形易于弄清命題并找出證明的方法.(3)加強(qiáng)各種推理訓(xùn)練,一般應(yīng)先使學(xué)生從“模仿”教科書(shū)的形式開(kāi)始訓(xùn)練.首先是用自然語(yǔ)言敘述只有一步推理的過(guò)程,然后用簡(jiǎn)化的“三段論”方法表述出這一過(guò)程,再進(jìn)行有兩步推理的過(guò)程的模仿;最后,在學(xué)完“命題、定理、證明”一單元后,總結(jié)證明的一般步驟,并進(jìn)行多至三、四步的推理.在以上訓(xùn)練中,每一步推理的后面都應(yīng)要求填注推理根據(jù),這既可訓(xùn)練良好的推理習(xí)慣,又有助于掌握學(xué)過(guò)的命題.教學(xué)目標(biāo):了解證明的必要性,知道推理要有依據(jù);熟悉綜合法證明的格式,能說(shuō)出證明的步驟.能用符號(hào)語(yǔ)言寫(xiě)出一個(gè)命題的題設(shè)和結(jié)論.通過(guò)對(duì)真命題的分析,加強(qiáng)推理能力的訓(xùn)練,培養(yǎng)學(xué)生邏輯思維能力.教學(xué)重點(diǎn):證明的步驟與格式.教學(xué)難點(diǎn):將文字語(yǔ)言轉(zhuǎn)化為幾何符號(hào)語(yǔ)言.教學(xué)過(guò)程:一、復(fù)習(xí)提問(wèn)命題“兩直線平行,內(nèi)錯(cuò)角相等”的題設(shè)和結(jié)論各是什么?根據(jù)題設(shè),應(yīng)畫(huà)出什么樣的圖形?(答:兩條平行線a、b被第三條直線c所截)結(jié)論的內(nèi)容在圖中如何表示?(答:在圖中標(biāo)出一對(duì)內(nèi)錯(cuò)角,并用符號(hào)表示)二、例題分析例1 、證明:兩直線平行,內(nèi)錯(cuò)角相等.已知: a∥b,c是截線.求證:∠1=∠2.分析:要證∠1=∠2,只要證∠3=∠2即可,因?yàn)椤?與∠1是對(duì)頂角,根據(jù)平行線的性質(zhì),易得出∠3=∠2.證明: ∵a∥b(已知),∴∠3=∠2(兩直線平行,同位角相等).∵∠1=∠3(對(duì)頂角相等),∴∠1=∠2(等量代換).例2 、證明:鄰補(bǔ)角的平分線互相垂直.已知:如圖,∠AOB+∠BOC=180176。,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。等于它們平方的和,加上它們乘積的兩倍(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。同時(shí)在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過(guò)程,具有了一定的獨(dú)立探究意識(shí)以及與同伴合作交流的能力.二、教學(xué)目標(biāo)知識(shí)與技能:(1)讓學(xué)生會(huì)推導(dǎo)完全平方公式,并能進(jìn)行簡(jiǎn)單的應(yīng)用.(2)了解完全平方公式的幾何背景.數(shù)學(xué)能力:(1)由學(xué)生經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展學(xué)生的符號(hào)感與推理能力.(2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.情感與態(tài)度:將學(xué)生頭腦中的前概念暴露出來(lái)進(jìn)行分析,避免形成教學(xué)上的“相異構(gòu)想”.三、教學(xué)重難點(diǎn)教學(xué)重點(diǎn):完全平方公式的推導(dǎo)。(2)25a4+10a2+1(3)(m+n)24(m+n)+4(教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)+16y4分解因式(本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)將乘法公式反過(guò)來(lái)就得到多項(xiàng)式因式分解的公式。部分學(xué)生板演
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1