freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式說(shuō)課說(shuō)課稿(專(zhuān)業(yè)版)

  

【正文】 。6具體教學(xué)過(guò)程設(shè)計(jì)如下::[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類(lèi)項(xiàng)法則,你會(huì)計(jì)算下列各題嗎?(x+3)2=,(x3)2=,這些式子的左邊和右邊有什么規(guī)律?再做幾個(gè)試一試:(2m+3n)2=,(2m3n)2=[學(xué)生回答]分組交流、討論 多項(xiàng)式的結(jié)構(gòu)特點(diǎn)(1)原式的特點(diǎn)。2□△+△2兩個(gè)完全平方公式的轉(zhuǎn)化:(ab)2= 2=( )2+2( )+( )2=二、合作探究利用乘法公式計(jì)算:(1) (3a+2b)2 (2) (4x21)2分析:要分清題目中哪個(gè)式子相當(dāng)于公式中的a ,哪個(gè)式子相當(dāng)于公式中的b利用乘法公式計(jì)算:(1) 992 (2) ( )2分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化( )2,( )2可以轉(zhuǎn)化為( )2利用完全平方公式計(jì)算:(1) (a+b+c)2 (2) (ab)3三、學(xué)習(xí)對(duì)照學(xué)習(xí)目標(biāo),通過(guò)預(yù)習(xí),你覺(jué)得自己有哪些方面的收獲?又存在哪些方面的疑惑?四、自我測(cè)試下列計(jì)算是否正確,若不正確,請(qǐng)訂正;(1) (1+3a)2=9a26a+1(2) (3x2 )2=9x4(3) (xy+4)2=x2y2+16(4) (a2b2)2=a2b22a2b+4利用乘法公式計(jì)算:(1) (3x+1)2 (2) (a3b)2(3) (2x+ )2 (4) (3m4n)2利用乘法公式計(jì)算:(1) 9992 (2) ()2先化簡(jiǎn),再求值;( m3n)2( m+3n)2+2,其中m=2,n=3五、思維拓展如果x2kx+81是一個(gè)完全平方公式,則k的值是多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是已知(x+y)2=9, (xy)2=5 ,求xy的值x+y=4 ,xy=10 ,那么xy=已知x =4,則x2+ =完全平方公式教案11重點(diǎn)、難點(diǎn)根據(jù)公式的特征及問(wèn)題的特征選擇適當(dāng)?shù)墓接?jì)算.教學(xué)過(guò)程一、議一議(a+b)的正方形面積是多少?、b拍的兩個(gè)正方形面積和是多少?(1)(2)的結(jié)果嗎?:學(xué)生回答(1)(a+b) (2)a +b (3)因?yàn)?a+b) = a +2ab+b ,所以 (a+b) (a +b )=a +2ab+b a b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.二、做一做例1. 利用完全平方式計(jì)算1. 102 。經(jīng)歷探索完全平方公式的推導(dǎo)過(guò)程,發(fā)展符號(hào)感,體會(huì)特殊一般特殊的認(rèn)知規(guī)律。了解完全平方公式的幾何背景二、學(xué)習(xí)重點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算。教學(xué)重點(diǎn):弄清完全平方公式的來(lái)源及其結(jié)構(gòu)特點(diǎn),用自己的語(yǔ)言說(shuō)明公式及其特點(diǎn);會(huì)用完全平方公式進(jìn)行運(yùn)算。[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:(a+b)2=a2+2ab+b2;(ab)2=a22ab+b2.〈三〉、運(yùn)用公式,解決問(wèn)題口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)(m+n)2=____________, (mn)2=_______________,(m+n)2=____________, (mn)2=______________,(a+3)2=______________, (c+5)2=______________,(7a)2=______________, ()2=______________.判斷:( )① (a2b)2= a22ab+b2( )② (2m+n)2= 2m2+4mn+n2( )③ (n3m)2= n26mn+9m2( )④ (5a+)2= 25a2+5ab+( )⑤ ()2= 5a25ab+( )⑥ (a2b)2=(a+2b)2( )⑦ (2a4b)2=(4a2b)2( )⑧ (5m+n)2=(n+5m)2一現(xiàn)身手① (x+y)2 =______________。②合并同類(lèi)項(xiàng)法則③多項(xiàng)式乘以多項(xiàng)式法則。3。四、小結(jié)運(yùn)用完全平方公式把一個(gè)多項(xiàng)式分解因式的主要思路與方法是:1。填空:(1)x2-10x+( )2=( )2;(2)9x2+( )+4y2=( )2;(3)1-( )+m2/9=( )2。y。問(wèn):具備什么特征的多項(xiàng)是完全平方式?答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號(hào)都是正號(hào),第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號(hào)可正可負(fù),像這樣的式子就是完全平方式。教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):運(yùn)用完全平方式分解因式。利用不同的的方法來(lái)推導(dǎo)完全平方公式,讓學(xué)生認(rèn)知數(shù)學(xué)中的不同解題方法。作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。(4)6(x–2)2+5(2–x)。學(xué)生易出現(xiàn)的錯(cuò)誤是,在用平方差完成分解因式后,不再繼續(xù)分解下去。以上6道題目的因式分解,有的是一個(gè)步驟完成的,如(1)、(3)、(4)用完全平方公式法。讓學(xué)生經(jīng)歷了由問(wèn)題情境到建構(gòu)模型,解釋?xiě)?yīng)用的探索過(guò)程,在主動(dòng)、愉悅的氣氛中獲取知識(shí)、掌握方法!在課堂上我沒(méi)有將重點(diǎn)放在公式的大量練習(xí)上,而是更多地去關(guān)注公式的發(fā)現(xiàn)和探究過(guò)程,這樣做轉(zhuǎn)變了學(xué)生的學(xué)習(xí)方式,培養(yǎng)了學(xué)生的能力,使學(xué)生學(xué)會(huì)探索,學(xué)會(huì)發(fā)現(xiàn),無(wú)論是在現(xiàn)在還是在將來(lái)的學(xué)習(xí)生活中,能夠擁有一雙更加矯健的翅膀,去翱翔在蒼穹之下,云端之上!我的說(shuō)課到此結(jié)束。此時(shí)我板書(shū)課題,通過(guò)“點(diǎn)題”來(lái)強(qiáng)化教學(xué)主線(xiàn)。其實(shí)這種方法也正是代數(shù)恒等式思想的重要體現(xiàn)。學(xué)生在數(shù)學(xué)活動(dòng)中左右腦優(yōu)勢(shì)互補(bǔ),潛能得以充分發(fā)揮。乘法公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開(kāi)端,完全平方公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算,培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)很有幫助。兩個(gè)例題都是強(qiáng)調(diào)了對(duì)公式結(jié)構(gòu)的把握。學(xué)生在數(shù)學(xué)活動(dòng)中左右腦優(yōu)勢(shì)互補(bǔ),潛能得以充分發(fā)揮。乘法公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開(kāi)端,完全平方公式的學(xué)習(xí)對(duì)簡(jiǎn)化某些整式的運(yùn)算,培養(yǎng)學(xué)生的求簡(jiǎn)意識(shí)很有幫助。情感態(tài)度與價(jià)值觀方面鼓勵(lì)學(xué)生自己探索算法的多樣化,培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力,同時(shí)通過(guò)小組合作來(lái)加強(qiáng)學(xué)生的團(tuán)隊(duì)意識(shí)。其實(shí)這種方法也正是代數(shù)恒等式思想的重要體現(xiàn)。作業(yè)布置時(shí)分層進(jìn)行,滿(mǎn)足了不同層次學(xué)生的不同需求。情感態(tài)度與價(jià)值觀方面鼓勵(lì)學(xué)生自己探索算法的多樣化,培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力,同時(shí)通過(guò)小組合作來(lái)加強(qiáng)學(xué)生的團(tuán)隊(duì)意識(shí)。7班衛(wèi)生委員要求將原衛(wèi)生區(qū)的邊長(zhǎng)增加b米,擴(kuò)充為一個(gè)邊長(zhǎng)為(a+b)米的大正方形。接著,我告訴學(xué)生:我們學(xué)的完全平方公式是一對(duì)雙胞胎,還有一個(gè)是兩數(shù)差的平方。例1強(qiáng)調(diào)了對(duì)公式結(jié)構(gòu)的把握。教學(xué)程序及教學(xué)內(nèi)容學(xué)生分組討論,合作交流,歸納完全平方公式的特征。只要因式中有多項(xiàng)式,而這個(gè)多項(xiàng)式還可以因式分解,包括有公因數(shù)我們就要把工作進(jìn)行下去,直到因式的各項(xiàng)不能再分解為止。四、作業(yè)設(shè)計(jì)1.復(fù)習(xí)乘法的平方差公式,乘法的完全平方公式計(jì)算:(1)(3m+2n)(2n–3m)。3.把下列各式分解因式:(1)16x–x3。情感態(tài)度與價(jià)值觀對(duì)學(xué)生觀察能力、概括能力、語(yǔ)言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。 (2)(x-1)2;(3)(a+b)2。2。3,所以x2+6x+9=(x+3) 。5x2把下列各式分解因式:(1)a2-24a+144; (2)4a2b2+4ab+1;(3)19x2+2xy+9y2; (4)14a2-ab+b2。五、作業(yè)把下列各式分解因式:1。利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問(wèn)題,從中培養(yǎng)學(xué)生的思維品質(zhì)。(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式;掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、不等式、函數(shù)等進(jìn)行描述。⑥ (4x5y)2 =______________。二、情境引入活動(dòng)內(nèi)容:提出問(wèn)題:一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。(x—2y)2等于;答案:x2—8xy+4y2解析:解答:(x—2y)2=x2—8xy+4y2分析:根據(jù)完全平方公式與積的乘方法則可完成此題。即∠1+∠2=90176。,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。教學(xué)難點(diǎn):消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”。(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。5教育理念和教學(xué)方式、積極互動(dòng)、共同發(fā)展的過(guò)程。學(xué)習(xí)難點(diǎn):掌握完全平方公式的結(jié)構(gòu)特征。(2)已知,求的值。結(jié)構(gòu)特點(diǎn):左邊是二項(xiàng)式(兩數(shù)和(差))的平方;右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。〈五〉、探險(xiǎn)之旅(1)(3a+2b)2=________________________________(2)(72m) 2 =__________________________________(3)(+2n) 2=_______________________________(4)(3/5a1/2b) 2=________________________________(5)(mn+3) 2=__________________________________(6)() 2=_________________________________(7)(2xy23x2y) 2=_______________________________(8)(2n33m3) 2=________________________________板書(shū)設(shè)計(jì)完全平方公式兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(1)原式的特點(diǎn)。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。(1) x -4x; (2)a5+a4+ a3。(3)是完全平方式,a24ab+4b2=(a-2b)2。 +( )2=(1- )2。1,所以25x -10x +1=(5x-1) 。這節(jié)課我們就來(lái)討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解。 (2)1022.解析:(1)把99寫(xiě)成(100-1)的形式,然后利用完全平方公式展開(kāi)計(jì)算.(2)可把102分成100+2,然后根據(jù)完全平方公式計(jì)算.解:(1)992=(100-1)2=1002-2100+12=10000-200+1=9801;(2)1022=(100+2)2=1002+21002+4=10404.方法總結(jié):利用完全平方公式計(jì)算一個(gè)數(shù)的平方時(shí),先把這個(gè)數(shù)寫(xiě)成整十或整百的數(shù)與另一個(gè)數(shù)的和或差,然后根據(jù)完全平方公式展開(kāi)計(jì)算.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第13題【類(lèi)型四】 靈活運(yùn)用完全平方公式求代數(shù)式的值若(x+)2=9,且(x-)2=1.(1)求1x2+12的值;(2)求(x2+1)(2+1)的值.解析:(1)先去括號(hào),再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案.解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2222=54;(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-22+1=10.方法總結(jié):所求的展開(kāi)式中都含有x或x+時(shí),我們可以把它們看作一個(gè)整體代入到需要求值的代數(shù)式中,整體求解.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第9題【類(lèi)型五】 完全平方公式的幾何背景我們已經(jīng)接觸了很多代數(shù)恒等式,知道可以用一些硬紙片拼成的圖形面積來(lái)解釋一些代數(shù)恒等式.例如圖甲可以用來(lái)解釋(a+b)2-(a-b)2=,驗(yàn)證了一個(gè)恒等式,此等式是( )A.a(chǎn)2-b2=(a+b)(a-b)B.(a-b)(a+2b)=a2+ab-2b2C.(a-b)2=a2-2ab+b2D.(a+b)2=a2+2ab+b2解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+.方法總結(jié):通過(guò)幾何圖形面積之間的數(shù)量關(guān)系對(duì)完全平方公式做出幾何解釋?zhuān)兪接?xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第7題【類(lèi)型六】 與完全平方公式有關(guān)的探究問(wèn)題下表為楊輝三角系數(shù)表,它的作用是指導(dǎo)讀者按規(guī)律寫(xiě)出形如(a+b)n(n為正整數(shù))展開(kāi)式的系數(shù),請(qǐng)你仔細(xì)觀察下表中的規(guī)律,填出(a+b)6展開(kāi)式中所缺的系數(shù).(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項(xiàng)展開(kāi)式的系數(shù)除首尾兩項(xiàng)都是1外,其余各項(xiàng)系數(shù)都等于(a+b)n-1的相鄰兩個(gè)系數(shù)的和,由此可得(a+b)4的各項(xiàng)系數(shù)依次為1;(a+b)5的各項(xiàng)系數(shù)依次為1;因此(a+b)6的系數(shù)分別為111,故填20.方法總結(jié):對(duì)于規(guī)
點(diǎn)擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1