【摘要】第一章勾股定理1探索勾股定理第1課時(shí)探索勾股定理第一章勾股定理A知識(shí)要點(diǎn)分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練A知識(shí)要點(diǎn)分類練第1課時(shí)探索勾股定理知識(shí)點(diǎn)1勾股定理1.若一個(gè)直角三角形的兩直角邊的長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,則下列關(guān)于a,b,
2025-06-12 01:43
【摘要】課題§(1)課型新授教學(xué)目1、能說出勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法2、經(jīng)歷探索勾股定理的過程,發(fā)展合情推理的能力,體會(huì)數(shù)形結(jié)合思想教學(xué)重點(diǎn)體驗(yàn)勾股定理的探索過程教學(xué)難點(diǎn)勾股定理在生活實(shí)際中的應(yīng)用教具準(zhǔn)備教學(xué)過程教學(xué)內(nèi)容教師活動(dòng)內(nèi)容、方式學(xué)生活動(dòng)
2024-12-08 02:28
【摘要】1探索勾股定理第一章勾股定理,了解勾股定理的探究方法及其內(nèi)在聯(lián)系.,并能運(yùn)用勾股定理解決一些實(shí)際問題.這是1955年希臘為紀(jì)念一個(gè)數(shù)學(xué)學(xué)派發(fā)行的郵票.PRQ正方形P的面積正方形Q的面積正方形R的面積ABC916?怎么求SR的大小?有幾種方案?
2024-11-21 04:26
【摘要】課題:探索勾股定理教材分析:勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)
2024-11-23 12:02
【摘要】第一篇:探索勾股定理學(xué)案 同步練習(xí) 注意:如果用勾股定理的逆定理判定一個(gè)三角形是否是直角三角形 (1)首先確定最大邊(如:C,但不要認(rèn)為最大邊一定是C) 222222(2)驗(yàn)證c與a+b是否具...
2024-11-19 01:16
【摘要】探索勾股定理baca2+b2=c2即直角三角形兩直角邊的平方和等于斜邊的平方.一、網(wǎng)格圖證明法ABCCBA觀察右邊兩幅圖:填表(每個(gè)小正方形的面積為單位1):A的面積B的面積C的面積左圖右圖4?怎
2025-05-08 23:35