【摘要】線性代數(shù)證明題1.設(shè)是非零的四維列向量,為的伴隨矩陣,已知的基礎(chǔ)解系為,證明是方程組的基礎(chǔ)解系.,且,則必是可逆矩陣。3.均是階矩陣,為階單位矩陣,若,證明:4.設(shè)3級(jí)方陣滿足,證明:可逆,并求其逆.5.設(shè)是一個(gè)級(jí)方陣,且,證明:存在一個(gè)級(jí)可逆矩陣使的后行全為零.6.設(shè)矩陣,且,證明:的行向量組線性無關(guān).7.,證明:是冪等矩陣的充要條件是,試證:也是對稱矩陣
2025-08-05 15:25
【摘要】微分中值定理的證明題1.若在上連續(xù),在上可導(dǎo),,證明:,使得:。證:構(gòu)造函數(shù),則在上連續(xù),在內(nèi)可導(dǎo),且,由羅爾中值定理知:,使 即:,而,故。2.設(shè),證明:,使得。 證:將上等式變形得:作輔助函數(shù),則在上連續(xù),在內(nèi)可導(dǎo), 由拉格朗日定理得:,即,即:。
2025-03-25 01:54
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對于證明題,有三種思考方式: (1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【摘要】第一篇:線面,面面平行證明題 線面,面面平行證明 一.線面平行的判定 :直線和平面沒有公共點(diǎn),:平面外的一條直線與此平面內(nèi)的一條直線平行,:a?a,bìa,a//bTa//a 二.面面平行的判...
2024-11-09 12:06
【摘要】第一篇:線性代數(shù)證明題 、B都是n階對稱矩陣,并且B是可逆矩陣,證明:AB-1+、B為對稱矩陣,所以AT=A,BT=B TTT-1-1-1-1-1證明:因?yàn)門(AB-1+B-1A)T=(AB-1)...
2024-10-28 04:51
【摘要】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09