【摘要】中值定理洛必達(dá)法則函數(shù)的單調(diào)性與極值函數(shù)圖形的描繪導(dǎo)數(shù)在經(jīng)濟(jì)中的應(yīng)用結(jié)束第3章中值定理、導(dǎo)數(shù)應(yīng)用前頁(yè)結(jié)束后頁(yè)定理1設(shè)函數(shù)滿(mǎn)足下列條件)(xf)()(bfaf?(3)(1)在閉區(qū)間
2025-02-21 10:32
【摘要】.⌒弧長(zhǎng)⌒⌒oxyxyo作業(yè)習(xí)題九(P199)1(2)(3)(6);2。
2025-04-28 23:18
【摘要】微積分Ⅰ1第九章重積分§二重積分的計(jì)算一、利用直角坐標(biāo)計(jì)算二重積分二、利用極坐標(biāo)計(jì)算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標(biāo)計(jì)算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
2025-01-19 21:34
【摘要】微積分積分公式積分上限的函數(shù)及其導(dǎo)數(shù)設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點(diǎn).現(xiàn)在我們來(lái)考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。如果上限x在區(qū)間[a,b]上任意變動(dòng),則對(duì)于每一個(gè)取定的x值,定積分有一個(gè)對(duì)應(yīng)值,所以它在[a,
2025-08-12 17:45
【摘要】第一節(jié)導(dǎo)數(shù)的概念一、導(dǎo)數(shù)概念的引出1.變速直線運(yùn)動(dòng)的速度設(shè)描述質(zhì)點(diǎn)運(yùn)動(dòng)位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時(shí)刻的瞬時(shí)速度為00)()(lim0tttstsvtt????221tg
2025-04-21 05:05
【摘要】§函數(shù)極限對(duì)于函數(shù)y=?(x),考察它的極限,考察自變量x在定義域內(nèi)變化時(shí),相應(yīng)的函數(shù)值的變化趨勢(shì)。;x???;x???;x??0;xx??0;xx??0;xx?種極限過(guò)程統(tǒng)一表示用記號(hào)6Xx?,下定義:如果在極限過(guò)程Xx?無(wú)限趨于)(xf,時(shí)當(dāng)則稱(chēng)Xx?,)(
2025-01-20 05:31