freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

第1章復(fù)變函數(shù)習(xí)題答案習(xí)題詳解(專業(yè)版)

2025-08-05 19:19上一頁面

下一頁面
  

【正文】 試證當(dāng)時(shí)的極限不存在。4) 。8) ;解:表示以與為焦點(diǎn)長半軸短半軸的橢圓及其內(nèi)部,是有界的單連通閉域。3) ;解:設(shè),則 即是平行于y軸的通過的直線。(方法二) ,位于以原點(diǎn)為圓心的單位圓上。即也是方程的根。3) ;解:假命題。因?yàn)閷?shí)數(shù)的共軛復(fù)數(shù)就是它本身。 其中:, 為具有實(shí)系數(shù)的關(guān)于的有理分式函數(shù)。 , 或 同理可得:或 分析:如果,則;如果,則與矛盾。20. 如果復(fù)數(shù)滿足等式,證明,并說明這些等式的幾何意義。5) ;解:設(shè),由,表示直線右邊的半平面區(qū)域(不含直線),是無界的單連通域。解:設(shè),則 26. 函數(shù)把下列平面上的曲線映射成平面上怎樣的曲線?1) ;解:設(shè),則 是w平面上的圓。30. 設(shè),證明在的某一去心鄰域內(nèi)是有界的,即存在一個(gè)實(shí)常數(shù),使在的某一去心鄰域內(nèi)有。32. 試證在原點(diǎn)與負(fù)實(shí)軸上不連續(xù)。解: 28. 證明167。解:設(shè),由,表示以點(diǎn)為圓心半徑為的圓及其內(nèi)部,是有界的單連通閉域。6) ;解:設(shè),則 即是以,為焦點(diǎn),長的半軸為2,短半軸為的橢圓。(方法三) ,位于以原點(diǎn)為圓心的單位圓上。解: 16.1) 求方程的所有根;解: 即:,2) 求微分方程的一般解。復(fù)數(shù)的幅角是任意的,也是無意義的。如果不是,對哪些值才成立?解:設(shè),則有: 故當(dāng),即是實(shí)數(shù)時(shí),成立。11. 證明:,并說明其幾何意義。證明:是內(nèi)接于單位圓的一個(gè)正三角形的頂點(diǎn)。(方法六)如右圖所示:所以為等邊三角形。2) ;解:設(shè),由得,表示以為圓心半徑為的圓(不含圓周)的外部,是無界的多單連通域。代入上式,得:。證明:在處連續(xù),即 , 即和在點(diǎn)處連續(xù)。故不存在,所以在負(fù)實(shí)軸上不連續(xù)。 故。因?yàn)椴蝗珵榱悖浴?) ;解:滿足的圖形是不包含實(shí)軸的上半
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1