freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

第十四章整式的乘法及因式分解教案(專業(yè)版)

2025-06-13 13:16上一頁面

下一頁面
  

【正文】 (2)能靈活運用公式解相關問題。二、教學重點:正確熟練運用十字交叉法、分組分解法進行因式分解。 D. X178。 2) 213178。 = (a+b)(ab) 即:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。教師引導學生思考、 討論、交流,教師給予適當?shù)狞c撥】(六)、布置作業(yè)P119頁第1題。長江作業(yè)。二、教學重點:理解添括號法則,進一步熟悉乘法公式的合理利用?!拷Y論:完全平方公式.: (a+b)2 = a2+2ab+b2(a-b)2 = a2-2ab+b2即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.【記憶口訣:首平方,尾平方,積的2倍中間放.】【公式的推導既是對上述特例的概括,更是從特殊到一般的歸納證明,在此應注意向學生滲透數(shù)學的思想方法:特例—歸納—猜想—驗證一用數(shù)學符號表示.】思考:你能根據(jù)下列圖形的面積說明完全平方公式嗎?aabba2ababb2【利用這個拼圖游戲,可進一步促使學生關注,體會數(shù)與形結合解釋公式的思想方法,】(三)、范例學習,應用新知P110:例3 運用完全平方公式計算(1)(4m+n)2 (2)(y-)2【學生練習:(1) ( x + 6 )2 (2) ( y 5 )2 (3) ( 2x + 5 )2 (4) (4m+n)2 】通過將算式中的各項與公式里的a、b進行對照,進一步體會字母a、b的含義,加深對字母含義廣泛性的理解.P110:例4 運用完全平方公式計算:(1) 1022 。 ⑵會推導平方差公式,并能運用公式進行簡單的運算。3x(2)(2x2y3)(7x2y2) 247。(三)、課堂練習,反饋提高P103 例8:計算:(1)28x4y2247。 23=24(3)a9247。(3) (x+2y)2 。過程與方法: ⑴ 經(jīng)歷探索多項式與多項式的乘法法則的過程,進一步發(fā)展觀察、歸納、概括的能 力,發(fā)展學生有條理的思考及語言表達能力。X3=X6 B、X2+X2=2X4 C、(2X)2=4X2 D、(2X2)(3X3)=6x5若n為正整數(shù),且x3n=2,求2x2n (c5(五)、知識拓展,發(fā)散思維 a3 .+(a2)4+(2a4)2 2(x3)-(3x3)3+(5x)拓展題: ; ; (5)若n是正整數(shù),且,求 的值。a③計算:①; ②。x100(2)已知: 28n16n=222,求n的值(3)如果 x mn (yx)3 (6)(mn)5 a(2)10101010可以寫成____。 因式分解 四、教學重點:整式的乘法,包括乘法公式。 第十四章《整式的乘法與因式分解》教案一、教材分析: 本章主要包括整式的乘法、乘法公式以及因式分解等知識。在整式的乘除中,單項式的乘除是關鍵。(3) a的底數(shù)是__,指數(shù)是__。 (nm)6(五)、課堂小結,歸納提高乘方的意義: an= a x 2n+1=x 11 , 且y m1 ④已知:,請用含有m、n的代數(shù)式表示和。……(六)、布置作業(yè)P104習題第3題。c2)=abc5+2=abc7 ②.試一試: 類似地,請你試著計算:(1)2c5x4n+x4n ⑵ 經(jīng)歷探索多項式與多項式的乘法法則的過程,體會乘法分配律的作用和“化歸”的 思想。 (4) (ax+b)(cx+d ) .【注意:必須做到不重復,不遺漏. 注意確定積中每一項的符號. 結果應化為最簡式{合并同類項}.】 學生板演:(1) (x+5)(x–7) (2) (2a+3b) (2a+3b)(3) (x+5y)(x–7y) (4) (2m+3n)(2m–3n)(五)、拓展思維,培養(yǎng)能力觀察下面四個等式,你能發(fā)現(xiàn)什么規(guī)律?你能根據(jù)這個規(guī)律解決下面的問題嗎?如果(x2+bx+8)(x2 – 3x+c)的乘積中不含x2和x3的項,求b、c的值。 a4=a5( 4) (a)10 247。7x3y; (2)5a5b3c247。(14x4y3)(3)-x.(3xy-6x2y2) 247。過程與方法: ⑴了解平方差公式的幾何背景,體會數(shù)形結合的思想方法. ⑵在探索平方差公式的過程中,發(fā)展學生的符號感和推理能力。 (2)992【學生練習:(1)3052 (2)1012 (3)2032 (4)10072】運用完全平方公式進行數(shù)的簡便運算的目的是進一步鞏固完全平方公式,體會符號運算對解決問題的作用,教學時可讓學生自己獨立解決此問題。三、教學難點:在多項式與多項式的乘法中適當添括號達到應用公式的目的。 因式分解(1)一、教學目標:知識與技能: (1)理解因式分解的概念和意義P1153題。(二)、課堂練習,運用提高P116例3:分解因式:(1)4x29 (2)(x+p)2(x+q)2【能否用平方差公式進行因式分解,取決于這個多項式是否符合平方差公式的特征,即兩個數(shù)的平方差,所以要強調多項式是否可化為( )2-( )2的形式.括號里的“東西”是一個整體,它可以是具體的數(shù)或單項式或多項式,如(3)題中應是多項式了.】練習1 將下列多項式分解因式:(1)x4y4 (2)a3bab (1)16a178。87178。+ y178。三、教學難點:把多項式進行必要的變形,靈活運用十字交叉法、分組分解法進行因式分解。 (3)知道整式乘法與因式分解的聯(lián)系與區(qū)別,并會運用它們之間的關系學會逆向思維解決問題。能夠運用冪的運算性質、整式乘法法則和乘法公式正確、合理地進行有關計算;能用提取公因式法和公式法對多項式進行因式分解。 因式分解(4)一、教學目標:知識與技能: 了解利用十字交叉法、分組分解法來分解二次三項式分解因式.過程與方法: 在運用十字交叉法、分組分解法同時培養(yǎng)學生釣觀察、比較和判斷能力以及運算能力,用不同的方法分解因式可以提高綜合運用知識的能力.進—步體驗“整體”的思想,培養(yǎng)“換元”的意識.情感與價值觀: 通過用十字交叉法、分組分解法進行因式分解與身邊實例的聯(lián)系,培養(yǎng)學生學數(shù)學、用數(shù)學,并學會用數(shù)學知識為社會服務的優(yōu)秀品質,增強學好數(shù)學的信心與勇氣。y179。37178。 b178?!緦W生先獨立完成。仿照上述結果,你能說出(a?b+c)2所得的結果嗎?(六)、布置作業(yè)P112頁3題。情感與價值觀: 鼓勵學生算法多樣化,培養(yǎng)學生多方位思考問題的習慣,提高學生的合作交流意識和創(chuàng)新精神。五、教具準備: 電子白板 課件 遠程教育資源網(wǎng)六、教學過程:(一)、知識回顧,探索新知回顧舊知———平方差公式 ( a + b )( a – b )=a2 b2探索問題:那么(a+b)(a+b)和(ab)(ab)是否也能用一個公式來表示呢?(二)、探索問題,研究新知計算下列各式,你能發(fā)現(xiàn)什么?(1) (p+1)2 = (3) (m+2)2=(2) (p1)2 = (4)(m2)2 =猜想: (a+b)2=a2+2ab+b2(a b)2=a2 2ab+b2【讓學生通過觀察、歸納,鼓勵他們發(fā)現(xiàn)這個公式的一些特點,如公式左右邊的特征,便于進一步應用公式計算。一、教學目標:知識與技能: ⑴經(jīng)歷探索平方差公式的過程。x=3xy-3y2感受體驗: (1)(5x32x2+6x) 247。m你能歸納多項式除以單項式的法則嗎?多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。103 =102 (2)27 247。多項式是單項式的和,每一項都包括前面的符號,在計算時一定要注意確定積中各項的符號.】(四)、課堂練習,反饋提高計算:(1) (m+2n)(m?2n); (2) (2n +5)(n?3) 。 ⑵ 能夠熟練地進行多項式與多項式的乘法運算。4X4=9X7下列運算正確的是( )A、X2b) an =am+n、(am)n =amn 可使某些計算簡捷。ab (乘方的意義)=(a二、教學重點:積的乘方運算法則及其應用三、教學難點:積的乘方法則的推導過程及靈活應用.四、教學方法:采用“探討、交流、合作”的教學方法,讓學生在互動交流中,認識冪的乘方法則.五、教具準備: 電子白板 課件 遠程教育資源網(wǎng)六、教學過程:(一)、知識回顧,創(chuàng)設情境知識回顧:①敘述同底數(shù)冪乘法法則并用字母表示②敘述冪的乘方法則 并用字母表示。 x5 (4) (ab)2(ab) (5) 73(7)7計算下列各題:(1) (-2)3(-2)5 (2) (-2)2(-2)7 (3) (-2)325 (4) (-2)227(5) (xy)2 a)(a】鞏固練習:(1)25 表示_____________。 3課時4.理解因式分解的意義,并感受分解因式與整式乘法是相反方向的運算,掌握提公因式法和公式法(直接運用公式不超過兩次)這兩種分解因式的基本方法,了解因式分解的一般步驟;能夠熟練地運用這些方法進行多項式的因式分解。整式的乘法運算和因式分解是基本而重要的代數(shù)初步知識,這些知識是以后進一步學習分式和根式運算、函數(shù)等知識的基礎,在后續(xù)的數(shù)學學習中具有重要意義。五、教學難點:乘法公式的靈活運用,添括號時,括號內符號的確定,因式分解。 6課時(4)(a+b) 3 的底數(shù)是___,指數(shù)是__。a y 4n = y 7 , 求m , n的值(七)、布置作業(yè) 課本P96練習題長江作業(yè)比一比運算種類公式法則中運算計算結果底數(shù)指數(shù)同底數(shù)冪乘法a) (b長江作業(yè) 整式的乘法(1)一、教學目標:知識與技能:能正確區(qū)別各單項式中的系數(shù)、同底數(shù)的次數(shù),會運用單項式與單項式乘法運算.過程與方法:經(jīng)歷探索單項式乘法法則的探索,理解單項式乘法中,系數(shù)與指數(shù)不同計算方法,正確應用單項式乘法步驟進行計算,能熟練地進行單項式與單項式相乘和含有加減法的混合運算.情感與價值觀:培養(yǎng)學生自主、探究、類比、聯(lián)想的能力,體會單項式相乘的運算規(guī)律,認識數(shù)學思維的嚴密性.二、教學重點:單項式與單項式相乘的法則.三、教學難點:單項式乘法法則的應用.四、教學方法:采用“探討、交流、合作”的教學方法,讓學生在互動交流中,認識冪的乘方法則.五、教具準備: 電子白板 課件 遠程教育資源網(wǎng)六、教學過程:(一)、知識回顧,溫故知新回憶冪的運算性質:同底數(shù)冪相乘:底數(shù)不變,指數(shù)相加。5c2;(2)(-5a2b3)x5n的值。情感與價值觀: ⑴ 通過探究面積的不同表示方法活動,使學生體驗探究的過程,培養(yǎng)學生的創(chuàng)新能 力?!就ㄟ^思維拓展,結合直觀圖形,自己嘗試發(fā)現(xiàn)規(guī)律,激發(fā)學生對問題中所 蘊藏的一些數(shù)學規(guī)律進行探索的興趣。 (a) 2=(a)8(二)、探索新知,培養(yǎng)能力由前面的習題猜想:am247。15a4b.(3)(12a36a2+3a)247。(3x2)(四)、課堂小結,歸納提高同底數(shù)冪相除,底數(shù)不變,指數(shù)相減:am247。情感與價值觀: 在計算的過程中發(fā)現(xiàn)規(guī)律,并能用符號表達,從而體會數(shù)學語言的簡捷美二、教學重點:平方差公式的推導和應用。思考:(a+b)2與(ab)2相等嗎?為什么? (ab)2與(ba)2相等嗎?為什么?(ab)2與a2b2相等嗎?為什么?【組織學生進行討論,通過自主推導,互相合作交流,共同解決難題.】 學生練一練(1)已知(a+b)2 = 21, (ab)2 =5,則ab=( )(2)若2a22ab+b22a+1=0則a、b分別為(4)已知x=a+2b,y=a2b,求:x2 +xy+y2.(四)、課堂小結,歸納提高完全平方公式: (a177。四、教學方法:引導─探究相結合。 (2)認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。長江作業(yè)。 1 ( 2 ) 4x178。3) 229178。(2)4a178。四
點擊復制文檔內容
教學教案相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1