【摘要】不等式的證明與解法(復(fù)習(xí)課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號(hào)----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項(xiàng)式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積一、不
2024-11-06 21:52
【摘要】函數(shù)法根據(jù)所給不等式的特征,利用函數(shù)的性質(zhì)及函數(shù)圖象來證明不等式成立的方法,稱之為函數(shù)法。荊州師范學(xué)院張軍濤教學(xué)目標(biāo)重點(diǎn)掌握函數(shù)的單調(diào)
2024-11-19 02:58
【摘要】不等式性質(zhì)兩個(gè)實(shí)數(shù)大小的比較ba1ba)2(ba1ba)1(,0b,a???????則若比商法比差法0baba0baba????????對稱性abba???傳遞性cacb,ba????加法單調(diào)性cbcaba?????移項(xiàng)法則bcacba?????乘法
2024-11-22 04:19
【摘要】第一篇: 均值不等式的常見題型 一基本習(xí)題 2、已知正數(shù)a,b滿足ab=4,那么2a+3b的最小值為()A10B12C43D46 3、已知a>0,b>0,a+b=1則11+的取值范圍是()ab...
2024-10-27 08:34
【摘要】精品資源用均值不等式解題的注意點(diǎn)使用算術(shù)與幾何平均值不等式解最值問題時(shí),一定要注意命題成立的條件,切實(shí)牢記“各數(shù)為正、正數(shù)之積或和為定值、等號(hào)成立的條件”這三點(diǎn),以防解題失誤。本文就這三點(diǎn)略舉幾例,供同學(xué)們參考。例1.設(shè)的最值。誤解:由于是定值,所以用均值不等式求得。故y有最小值。辨析:這個(gè)解是錯(cuò)誤的,其根源在于不注意正數(shù)的條件。
2025-03-25 06:05
【摘要】不等式的定義:一般地,用符號(hào)“”、“≥”連接的式子叫做不等式不等式的解集可在數(shù)軸上直觀表示。規(guī)律:大于向箭頭,小于向箭尾,有等號(hào)(≤、≥)畫實(shí)心點(diǎn),無等號(hào)(<、>=畫空心圈。列不等式注意找到問題中不等關(guān)系的詞正數(shù)
2024-11-06 21:53
【摘要】2020年12月13日星期日18:41:23不等式復(fù)習(xí)(一)2020年12月13日星期日18:41:24《不等式》知識(shí)結(jié)構(gòu)不等式均值不等式不等式證明不等式解法不等式應(yīng)用不
【摘要】喬瑞霞蛟河三中:1.不等式,一元一次不等式2.不等式的解3.不等式的解集4.解一元一次不等式一.基本概念:?不等式的基本性質(zhì)(3條):?1)不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向____.?2)不等式兩邊都乘以(或除以)同一個(gè)
2025-08-05 01:06
【摘要】不等式與不等式組適用年級(jí)七年級(jí)所需時(shí)間課內(nèi)9課時(shí),課外2課時(shí)主題單元學(xué)習(xí)概述“不等式與不等式組”主題單元結(jié)構(gòu)包括“相關(guān)概念”、“探究性質(zhì)”、“簡單應(yīng)用”三部分,這與課本的內(nèi)容安排大體相同。教材的編寫順序是“一元一次不等式(組)及其相關(guān)概念,不等式的性質(zhì),一元一次不等式(組)的解法及解集的幾何表示,利用一元一次不等式分析、解決實(shí)際問題。教材以實(shí)際問題為例引出不等式及其解集的
2025-04-04 03:45