freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式教學(xué)設(shè)計[5篇范文](更新版)

2024-11-04 22:29上一頁面

下一頁面
  

【正文】 確用于計算之中,此時也可以讓學(xué)生對兩個公式特點進行討論歸納,適當(dāng)總結(jié)一定的口訣:“頭平方,尾平方,兩倍的乘積中間放。二、交流對話,探求新知推導(dǎo)兩數(shù)和的完全平方公式計算(a+b)2解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2理解公式特征①算式:兩數(shù)和的平方②積:兩個數(shù)的平方和加上這兩個數(shù)積的2倍語言敘述(a+b)2=a2+2ab+b2用語言如何敘述公式(a—b)2=a2—2ab+b2教學(xué)①利用多項式乘法 (a—b)2=(a—b)(a—b)②利用換元思想 (a—b)2=[a+(—b)]2③利用圖形ba(a—b) ba學(xué)生總結(jié)、歸納:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2這兩個公式叫做完全平方公式,兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和,加上(或減去)這兩數(shù)積的2倍。(三)學(xué)法指導(dǎo):在學(xué)法上,教師應(yīng)引導(dǎo)學(xué)生積極思維,鼓勵學(xué)生進行合作學(xué)習(xí),讓每個學(xué)生都動口、動手、動腦,自己歸納出運算法則,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。情感目標(biāo):培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思維品質(zhì)。b)= a 177。情感目標(biāo)在靈活應(yīng)用公式的過程中激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)創(chuàng)新能力和探索精神。(五)布置作業(yè) 作業(yè)必做題:教材112頁第7題 選做題:教材112頁9題第二篇:完全平方公式 教學(xué)設(shè)計 完全平方公式 教學(xué)設(shè)計20212022學(xué)年人教版八年級數(shù)學(xué)上冊【課標(biāo)內(nèi)容】通過本課的學(xué)習(xí)不斷啟迪學(xué)生思考,發(fā)展學(xué)生的思維能力,讓學(xué)生經(jīng)歷探索新知、鞏固新知和拓展新知這一過程,發(fā)揮學(xué)生的主體作用,增強學(xué)生學(xué)數(shù)學(xué)、讓學(xué)生在公式的運用中積累解題的經(jīng)驗,體會成功的喜悅.【教材分析】本節(jié)課的教學(xué)內(nèi)容是完全平方公式,既是多項式乘法的延伸,又是一種特殊形式的多項式的乘法,它在后繼學(xué)習(xí)中如:公式法分解因式、配方法等具有支撐作用,是一種被廣泛應(yīng)用的公式,教材通過創(chuàng)設(shè)“計算實驗田面積”的問題,引導(dǎo)學(xué)生利用不同的計算方法得出完全平方公式,同時也給出了完全平方公式的幾何背景,通過設(shè)計“想一想”,對得出的公式利用已經(jīng)學(xué)過的多項式乘法法則進行驗證,進而得出(ab)2=a22ab+b2,然后將(a+b)2=a2+2ab+b2與(ab)2=a22ab+b2統(tǒng)稱為“完全平方公式”.通過設(shè)計例題和隨堂練習(xí)實現(xiàn)學(xué)生能運用公式進行簡單計算的目的,通過設(shè)計“讀一讀”介紹“楊輝三角”使學(xué)生了解我國古代數(shù)學(xué)的輝煌成就,并引導(dǎo)學(xué)生發(fā)現(xiàn)新的規(guī)律,為學(xué)生產(chǎn)生思維的飛躍提供了平臺.【學(xué)情分析】學(xué)生已熟練掌握了冪的運算和整式乘法,但在進行多項式乘法運算時常常會確定錯某些項符號及漏項等問題.學(xué)生學(xué)習(xí)完全公式的困難在于對公式的結(jié)構(gòu)特征以及公式中字母的廣泛含義學(xué)生的理解.因此,教學(xué)中引導(dǎo)學(xué)生分析公式的結(jié)構(gòu)特征,并運用變式訓(xùn)練揭示公式的本質(zhì)特征,以加深學(xué)生對公式的理解.【教學(xué)目標(biāo)】:學(xué)生通過推導(dǎo)完全平方公式,了解公式的幾何背景;理解并掌握公式的結(jié)構(gòu)特征,并能進行簡單計算;:學(xué)生在探索完全平方公式的過程中,體會數(shù)形結(jié)合,進一步發(fā)展符號感和推理能力;:通過聯(lián)系生活實際的學(xué)習(xí),體會到公式的應(yīng)用價值,在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點,形成良好的學(xué)習(xí)態(tài)度.【教學(xué)重點】完全平方公式的結(jié)構(gòu)特征及公式直接應(yīng)用.【教學(xué)難點】對公式中字母a、b的廣泛含義的理解與正確應(yīng)用.【教學(xué)方法】五步教學(xué)法 引導(dǎo)發(fā)現(xiàn)法、類比法、啟發(fā)探究 講練結(jié)合【課前準(zhǔn)備】學(xué)案 多媒體課件【課時設(shè)置】一課時【教學(xué)過程】數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,為有序、有效地進行教學(xué),切實突出學(xué)生主體地位,:一、預(yù)學(xué)自檢 互助點撥(閱讀課本P 109~ 110頁,思考下列問題),能發(fā)現(xiàn)什么規(guī)律?(1)(p+1)2=(p+1)(p+1)=___________ (2)(m+2)2=________(3)(p-1)2=(p-1)(p-1)=___________(4)(m-2)2=______________ 再計算: 2.歸納公式:文字?jǐn)⑹觯?文字?jǐn)⑹觯?公式中的a、b可以代表 3.思考:看課本P109思考圖::老師引導(dǎo)學(xué)生觀察、分析、發(fā)現(xiàn)和提出問題,讓學(xué)生用自己的方法探究完全平方公式的結(jié)構(gòu)特征,教師引導(dǎo)學(xué)生討論,并對照“平方差公式”的特征和形式.【設(shè)計意圖】 讓學(xué)生親自觀察、探究、得出結(jié)論,激發(fā)興趣加深對公式的理解和掌握通過引導(dǎo)學(xué)生自主合作、探究、驗證,培養(yǎng)學(xué)生分析問題、幫助學(xué)生熟練掌握應(yīng)用完全平方公式進行因式分解,、合作互學(xué) 探究新知(1)(2)(3)(4)思考:相等嗎?相等嗎?學(xué)生以小組為單位進行探索交流,教師可參與到學(xué)生的討論中,對遇到困難的同學(xué)及時予以啟發(fā)和幫助,教師引導(dǎo),組織練習(xí),巡回輔導(dǎo),重點問題進行強化、點撥方法、總結(jié)規(guī)律,、自我檢測 成果展示(1)(2)(3) (4)判斷題(1)()(2)()(3)()(4)選擇題 是一個完全平方式,那么m的值是()A.4 B.4 C. D.通過計算和交流,使學(xué)生能夠正確運用“兩數(shù)和的完全平方公式”進行計算四、應(yīng)用提升 ,則值是【設(shè)計意圖】 設(shè)置階梯式練習(xí),符合學(xué)生身心發(fā)展的規(guī)律,培養(yǎng)學(xué)生勤于思考、善于動腦的良好學(xué)習(xí)習(xí)慣,并讓學(xué)生感受新舊知識之間的緊密聯(lián)系五、經(jīng)驗總結(jié) 反思收獲本節(jié)課你學(xué)到了什么?寫出來 173。(2)乘法公式是后續(xù)學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)因式分解、分式運算的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的功能。二、教學(xué)方法與手段(一)教學(xué)方法:針對初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索,啟發(fā)引導(dǎo),合作交流展開教學(xué),引導(dǎo)學(xué)生主動地進行觀察、猜測、驗證和交流。四、教學(xué)程序一、創(chuàng)設(shè)情境,引出課題如圖,有一個邊長為a米的正方形廣場,則這個廣場的面積是多少?a若在這個廣場的相鄰兩邊鋪一條寬為10米的道路,則面積是多少?a 10引導(dǎo)學(xué)生利用圖形分割求面積。組織學(xué)生小組討論,使學(xué)生明確公式特征,加深對公式表象的理解。換元的基本想法四、應(yīng)用新知,體驗成功例1教學(xué):用完全平方公式計算(1)(a+3)2(2)(y—)2(3)(—2x+t)2(4)(—3x—4y)2學(xué)生直接運用公式計算,教師板演,講評時邊口述理由,針對第(4)題(—3x—4y)2可以看成是—3x與4y差的平方,也可以看成—3x與—4y和的平方。(3)進行符號轉(zhuǎn)化的變換,加深學(xué)生對公式理解的深度,也為進一步學(xué)習(xí)其它知識打好基礎(chǔ)。(2)結(jié)合學(xué)生實際情況,貫徹面向全體學(xué)生,因材施教原則。學(xué)習(xí)重點:會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc四、隨堂練習(xí)P38 1五、小結(jié)本節(jié)課進一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運算時注意以下幾點.,不能出現(xiàn)(a177。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。重點難點重點完全平方公式的比較和運用難點完全平方公式的結(jié)構(gòu)特點和靈活運用??偨Y(jié)歸納得到:;三、典例剖析例1運用完全平方公式計算:(1);(2)鼓勵學(xué)生用多種方法計算,只要言之成理,只要是自己動腦筋發(fā)現(xiàn)的,都要給予肯定,同時還要引導(dǎo)學(xué)生評價哪種算法最簡潔。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。并尊重與理解他人的見解。(2) 通過判斷和舉例,給學(xué)生更多機會,在自然放松的狀態(tài)下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。但是對于幾何圖形如何用代數(shù)來表示,從而表示圖形的面積,學(xué)生會有一定困難,另外,在具體運用公式時,學(xué)生的感性認(rèn)識往往表現(xiàn)比較突出,一部分學(xué)生總是會出現(xiàn)(a+b)2=a2+b2,(ab)2=a2b2的問題,對公式中a、b的理解,對“和”“差”符號的區(qū)別也會有些障礙。會運用公式進行簡單的計算。(1)(a+b)2 (2) (ab)2(此時,教師可讓學(xué)生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣。總結(jié):我們把(a+b)2=a2+2ab+b2 (a–b)2=a2–2ab+b2稱為完全平方公式。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。這節(jié)課的目的就是讓學(xué)生從特殊性的計算上升到一般性的規(guī)律,得出公式,并能正確的應(yīng)用公式。五、教學(xué)難點;掌握公式中字母表達式的意義及靈活運用公式進行計算。七、教學(xué)和活動過程:〈一〉、提出問題[引入] 同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎? (x+3)2=_______________,(x3)2=_______________,這些式子的左邊和右邊有什么規(guī)律?再做幾個試一試:(2m+3n)2=_______________,(2m3n)2=_______________,〈二〉、分析問題[學(xué)生回答] 分組交流、討論 多項式的結(jié)構(gòu)特點(2m+3n)2= (2m)2+2(4)三項與原多項式中兩個單項式的關(guān)系。3+32=x26x+9____。③ (2x+3)2 =_____________。〈五〉、練習(xí)填空(1)(3a+2b)2=________________________________(2)(5m) 2 =__________________________________(3)(+2n) 2=_______________________________(4)(3/5a1/2b) 2=________________________________(5)(mn3)2=__________________________________(6)()2=_________________________________(7)(2xy2+x2y) 2=_______________________________(8)(2n34m2)=________________________________〈六〉、自我評價[小結(jié)] 通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。用途:用于解決兩個完全相同的二項式乘積運算. 應(yīng)在課堂上大力推行邊啟發(fā)、邊探索、邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)原則..既講“法”,又講“理”:在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進行記憶,比如:我們要借助面積圖形對完全平方公式做直觀說明.、講對比、,其原因是把完全平方公式和舊知識及分配律弄混淆,要善于排除新舊知識間互相干擾的作用. 規(guī)范板書。而且乘法公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運算的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用。右邊是兩數(shù)的平方差。用不同的形式表示實驗田的總面積,并進行比較。不過由于前面列代數(shù)式一部分內(nèi)容的學(xué)習(xí),絕大多數(shù)學(xué)生能夠很順利地想到兩種不同的方法,并從中建立了數(shù)形結(jié)合的意識。活動目的:第一個活動是讓學(xué)生在上面討論的基礎(chǔ)上,從代數(shù)運算的角度運用多項式的乘法法則,推導(dǎo)出兩數(shù)和的完全平方公式,并且進一步推導(dǎo)出兩數(shù)差的完全平方公式。通過幾個活動學(xué)生能夠初步地掌握了完全平方公式,并在推導(dǎo)過程中培養(yǎng)了數(shù)學(xué)的基本能力。考察個人的實際運用能力,并及時查漏補缺。b)=a 177。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂此不疲,更加充分的參與其中。
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1