freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教案[定稿](更新版)

  

【正文】 已知兩邊以及其中一邊的對(duì)角解三角形時(shí)解的個(gè)數(shù)的判斷。)=24176。)=105176。B2≈150176。)=85176。(4)A=20,B=28,A=120176。(40176。時(shí), C =180176。 c=≈(cm). [方法引導(dǎo)](1)此類問(wèn)題結(jié)果為唯一解,學(xué)生較易掌握,如果已知兩角和兩角所夾的邊,也是先利用內(nèi)角和180176。+,可得. ∴(形式1).綜上所述,正弦定理對(duì)于銳角三角形、直角三角形、鈍角三角形均成立.師在證明了正弦定理之后,我們來(lái)進(jìn)一步學(xué)習(xí)正弦定理的應(yīng)用. [教師精講](1)正弦定理說(shuō)明同一三角形中,邊與其對(duì)角的正弦成正比,且比例系數(shù)為同一正數(shù),即存在正數(shù)k使A=ksinA,B=ksinB,C=ksinC;(2)等價(jià)于(形式2).我們通過(guò)觀察正弦定理的形式2不難得到,利用正弦定理,可以解決以下兩類有關(guān)三角形問(wèn)題.①已知三角形的任意兩角及其中一邊可以求其他邊,,故第三角確定,三角形唯一,解唯一,相對(duì)容易,課本P4的例1就屬于此類問(wèn)題. ②已知三角形的任意兩邊與其中一邊的對(duì)角可以求其他角的正弦值,如.此類問(wèn)題變化較多,我們?cè)诮忸}時(shí)要分清題目所給的條件.一般地,已知三角形的某些邊和角,求其他的邊和角的過(guò)程叫作解三角形.師接下來(lái),我們通過(guò)例題評(píng)析來(lái)進(jìn)一步體會(huì)與總結(jié).[例題剖析]【例1】在△ABC中,已知A=176。+jA). ∴AsinC=CsinA. ∴.另外,過(guò)點(diǎn)C作與垂直的單位向量j,則j與的夾角為90176。B=|A||B|Cosθ,其中θ為兩向量的夾角.師回答得很好,但是向量數(shù)量積涉及的是余弦關(guān)系而非正弦關(guān)系,這兩者之間能否轉(zhuǎn)化呢?生 可以通過(guò)三角函數(shù)的誘導(dǎo)公式sinθ=Cos(90176。θ這一形式,這是作輔助向量j垂直于三角形一邊的原因.師在向量方法證明過(guò)程中,構(gòu)造向量是基礎(chǔ),并由向量的加法原則可得 而添加垂直于的單位向量j是關(guān)鍵,為了產(chǎn)生j與、的數(shù)量積,而在上面向量等式的兩邊同取與向量j的數(shù)量積運(yùn)算,也就在情理之中了.師下面,大家再結(jié)合課本進(jìn)一步體會(huì)向量法證明正弦定理的過(guò)程,并注意總結(jié)在證明過(guò)程中所用到的向量知識(shí)點(diǎn).點(diǎn)評(píng):(1)在給予學(xué)生適當(dāng)自學(xué)時(shí)間后,應(yīng)強(qiáng)調(diào)學(xué)生注意兩向量的夾角是以同起點(diǎn)為前提,以及兩向量垂直的充要條件的運(yùn)用.(2)要求學(xué)生在鞏固向量知識(shí)的同時(shí),進(jìn)一步體會(huì)向量知識(shí)的工具性作用.向量法證明過(guò)程:(1)△ABC為銳角三角形,過(guò)點(diǎn)A作單位向量j垂直于,則j與的夾角為90176。C,j與的夾角為90176。Cos(90176。(A+B)=180176。邊長(zhǎng)精確到1 cm).分析:此例題屬于BsinA<a<b的情形,故有兩解,這樣在求解之后呢,無(wú)需作進(jìn)一步的檢驗(yàn),使學(xué)生在運(yùn)用正弦定理求邊、角時(shí),感到目的很明確,同時(shí)體會(huì)分析問(wèn)題的重要性.解:根據(jù)正弦定理, sinB =≈ 9.因?yàn)?176。+64176。 C=≈13(cm). [方法引導(dǎo)]通過(guò)此例題可使學(xué)生明確,利用正弦定理求角有兩種可能,但是都不符合題意,可以通過(guò)分析獲得,也可通過(guò)三角形的有關(guān)性質(zhì)來(lái)判斷,對(duì)于這一點(diǎn),我們通過(guò)下面的例題來(lái)體會(huì).變式一:在△ABC中,已知A=60,B=50,A=38176。.當(dāng)A1≈65176。(B+A2)=180176。>180176。.由于B<C,故B<C,∴B2≈139176。過(guò)程與方法:讓學(xué)生從實(shí)際問(wèn)題出發(fā),結(jié)合以前學(xué)習(xí)過(guò)的直角三角形中的邊角關(guān)系,引導(dǎo)學(xué)生不斷地觀察、比較、分析,采取從特殊到一般以及合情推理的方法發(fā)現(xiàn)并證明正弦定理,使學(xué)生體會(huì)完全歸納法在定理證明中的應(yīng)用;讓學(xué)生在應(yīng)用定理解決問(wèn)題的過(guò)程中更深入的理解定理及其作用。教學(xué)過(guò)程中鼓勵(lì)學(xué)生合作交流、動(dòng)手實(shí)踐,通過(guò)對(duì)定理的推導(dǎo)、解讀、應(yīng)用,引導(dǎo)學(xué)生主動(dòng)思考、總結(jié)、歸納解答過(guò)程中的內(nèi)在規(guī)律,形成一般結(jié)論。學(xué)生:如圖,過(guò)點(diǎn)A作BC邊上的高,垂直記作D然后,首先利用題目中的已知數(shù)據(jù)求出角C的大小,接著把題目中的相關(guān)數(shù)據(jù)和角C的值代入上述等式,即可求出b,即AC的值,然后可利用AC、AB、角B、角C的值和三角函數(shù)知識(shí)可分別求出CD和BD的長(zhǎng)度,把所求出的CD和BD的長(zhǎng)度相加即可求出BC的長(zhǎng)度。:讓學(xué)生從已有的幾何知識(shí)出發(fā),共同探究在任意三角形中,邊與其對(duì)角的關(guān)系,引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,并進(jìn)行定理基本應(yīng)用的實(shí)踐操作。二、新課講解【師】:請(qǐng)同學(xué)們回憶一下,在直角三角形中各個(gè)角的正弦是怎么樣表示的?【生】:在直角三角形ABC中,sinA=ab,sinB=,sinC=1 ccabc,c=,c=,也就是說(shuō)在Rt△ABCsinAsinBsinC【師】:有沒有一個(gè)量可以把三個(gè)式子聯(lián)系起來(lái)? 【生】:邊c可以把他們聯(lián)系起來(lái),即c=中abc== sinAsinBsinC【師】:對(duì),很美、很對(duì)稱的一個(gè)式子,用文字來(lái)描述就是:“在一個(gè)直角三角形中,各邊與它所對(duì)角的正弦比相等”,那么在斜三角形中,該式是否也成立呢?讓我們?cè)趲缀萎嫲逯序?yàn)證一下,對(duì)任意的三角形ABC是不是都有“各邊與它所對(duì)角的正弦比相等”成立?【師】:通過(guò)驗(yàn)證我們得到,在任意的三角形中都有各個(gè)邊和他所對(duì)的角的正弦值相等。即在鈍角三角sinAsinCsinBsinC形ABC中也有每條邊和它所對(duì)的角的正弦值相等這個(gè)結(jié)論。sin45o\a===osinCsin30bcQ=sinBsinCB=180o(A+C)=180o(45o+30o)=105oQcsinB10180。三、定理應(yīng)用:例1:在△ABC中,已知c=10, A=45176。3在△ABC中,已知b=40,c=20, C=45176。在△ABC中,已知b=4,c=8,B=30,求∠A,∠C和邊a。難點(diǎn):正弦定理的探索及證明,由特殊到一般歸納出正弦定理,掌握正弦定理的內(nèi)容及其證明方法。 正弦定理的簡(jiǎn)單應(yīng)用:已知兩邊和其中一邊的對(duì)角,求其他邊和角時(shí),三角形的解是唯一的嗎?五、板書設(shè)計(jì)
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1