【摘要】第14講│導數(shù)的應用第14講導數(shù)的應用知識梳理第14講│知識梳理1.函數(shù)的單調性若函數(shù)f(x)在某區(qū)間內可導,則f′(x)0?f(x)在該區(qū)間上_________;f′(x)0?f(x)在該區(qū)間上____________.反之,若f(x)在某區(qū)間上單調遞增,則在
2025-11-03 01:35
【摘要】第7節(jié)函數(shù)的圖象(對應學生用書第23頁)(對應學生用書第23~24頁)1.利用描點法作函數(shù)圖象其基本步驟是列表、描點、連線,首先:①確定函數(shù)的定義域;②化簡函數(shù)解析式;③討論函數(shù)的性質(奇偶性、單調性、周期性、對稱性等);其次:列表(尤其注意
2025-11-03 01:38
【摘要】幾種常見函數(shù)的導數(shù)一、復習,過曲線某點的切線的斜率的精確描述與求值;物理學中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質相同的數(shù)學表達式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導數(shù),導數(shù)源于實踐,又服務于實踐
2025-11-02 21:10
【摘要】一、配方法形如y=af2(x)+bf(x)+c(a≠0)的函數(shù)常用配方法求函數(shù)的值域,要注意f(x)的取值范圍.例1(1)求函數(shù)y=x2+2x+3在下面給定閉區(qū)間上的值域:二、換元法通過代數(shù)換元法或者三角函數(shù)換元法,把無理函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)等超越函數(shù)轉化為代數(shù)函數(shù)來求函數(shù)值域的方
2025-11-02 21:11
【摘要】高一年級數(shù)學第一章課題:集合的表示問題提出?確定性、無序性、互異性?屬于、不屬于,如“在平面直角坐標系中以原點為圓心,2為半徑的圓周上的點”組成的集合,那么,我們可以用什么方式表示集合呢?知識探究(一)思考1:這兩個集合分別有哪些元
2025-11-02 21:08
【摘要】問題提出A、B,二者之間一定具有包含關系嗎?試舉例說明.、減、乘、除四則運算,那么兩個集合是否也可以進行某種運算呢?(一)交集考察集合:A={1,2,3,4,5},B={3,4,5,6,8},上述集合A,B的所有公共元素構成一個新的集合{3,4,5}一般地,對于給定
2025-11-02 08:57
【摘要】第7講函數(shù)的圖像掌握基本函數(shù)圖象的作法——描點法和圖象變換法;會運用函數(shù)圖象,理解研究函數(shù)的性質;會看圖得到相關信息,即學會作圖、識圖、用圖.y=(00)
2025-11-01 08:37
【摘要】問題1:已知直線L過點(1,2),斜率為,則直線L上任一點滿足什么條件?你能得出直線L的方程嗎?問題2:若直線L經(jīng)過點P1(x1,y1),且斜率為k,則L的方程是什么?§直線的方程(1)設點P(x,y)是直線L上不同于點P1
2025-11-01 08:31
【摘要】球和它的性質球:與定點的距離等于或小于定長的所有點的集合叫做球體,簡稱球.球的直徑球的半徑定點叫做球心;定長叫做球的半徑.一個球用表示它的球心的字母來表示,例如:球O.O球心O用一個平面去截一個球,所得截面是什么圖形?圓面dRr22dR
2025-11-01 08:33