【摘要】已知:函數(shù)是可導的奇函數(shù),求證:其導函數(shù)是偶函數(shù)。()fx()fx?????????????000()limlimlim()xxxfxxfxfxxfxxfxxfxxfxxfx????
2025-07-25 20:32
【摘要】1北師大版高中數(shù)學選修2-2第二章《變化率與導數(shù)》法門高中姚連省制作2一、教學目標:理解導數(shù)的概念,會利用導數(shù)的幾何意義求曲線上某點處的切線方程。二、教學重點:曲線上一點處的切線斜率的求法教學難點:理解導數(shù)的幾何意義三、教學方法:探析歸納,講練結(jié)合四、教學過程3,它是從眾多實際問
2024-11-12 16:44
【摘要】西安石油大學本科畢業(yè)設計(論文)本科畢業(yè)設計(論文)開題報告題目:共軛梯度算法的設計與實現(xiàn)學生姓名:院(系):
2024-12-06 02:38
【摘要】第四章初等函數(shù)的導數(shù)與積分4-1對數(shù)函數(shù)的導數(shù)與積分4-2指數(shù)函數(shù)的導數(shù)與積分4-3三角函數(shù)的導數(shù)與積分1.對數(shù)2.對數(shù)微分3.對數(shù)函數(shù)的積分4-1對數(shù)函數(shù)的導數(shù)與積分對數(shù)在對數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對數(shù)函數(shù),
2025-07-21 19:54
【摘要】§8.高階導數(shù)與高階微分YunnanUniversity1一、高階導數(shù)及其運算法則,其速度物體運動規(guī)律)(tss?.lim)(0tstsvt???????一階導數(shù)).())(()(lim)(0tststvtvtat?????????????時間內(nèi)在t?于是,212gts?自由落
2025-05-14 22:24
【摘要】求導法則基本公式導數(shù)xyx????0lim微分xydy???關(guān)系)(xodyydxydyydxdy??????????高階導數(shù)一、主要內(nèi)容1、導數(shù)的定義即或記為處的導數(shù)在點并稱這個極限為函數(shù)處可導在點則稱函數(shù)時的極限存在之比當與如果取得增
2025-07-25 05:41
【摘要】(4).對數(shù)函數(shù)的導數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數(shù):
2025-01-18 17:16
【摘要】預習學案課堂講義課后練習工具第三章變化率與導數(shù)欄目導引§4導數(shù)的四則運算法則預習學案課堂講義課后練習工具第三章變化率與導數(shù)欄目導引導數(shù)的加法與減法法則預習學案課堂講義課后練習工具第三章
2025-07-25 13:36
【摘要】1總復習二導數(shù)與微分一、導數(shù)與微分的定義????????討論已知,000,0,00,1sin???????????ggxxxxgxf??.0處的連續(xù)性和可微性在?xxf例1????xxgxfxx1sinlimlim00????解??
2025-07-25 07:37