【摘要】WORD資料可編輯圓錐曲線專項突破1.已知拋物線C:的焦點為原點,C的準線與直線的交點M在x軸上,與C交于不同的兩點A、B,線段AB的垂直平分線交x軸于點N(p,0).(Ⅰ)求拋物線C的方程;(Ⅱ)求實數(shù)p的取值范圍;(Ⅲ)若C的焦點和準線為橢圓Q的一
2025-06-22 23:13
【摘要】1直線和圓錐曲線??碱}型運用的知識:1、中點坐標公式:1212,y22xxyyx????,其中,xy是點1122(,)(,)AxyBxy,的中點坐標。2、弦長公式:若點1122(,)(,)AxyBxy,在直線(0)ykxbk???
2025-10-11 15:53
【摘要】圓錐曲線:圓、橢圓、拋物線,雙曲線。拋物線及其標準方程二次函數(shù))0(2????acbxaxy的圖象(示意圖)?拋物線xyoxoy同學們生活學習中見過拋物線的實例有哪些?噴泉探照燈的燈面平面內(nèi)與一個定點F和一條定直線l(l不過點F)的距離相等的點
2025-10-08 18:08
【摘要】把直線方程代入圓的方程得到一元二次方程計算判別式?0,相交?=0,相切?0,相離[1]判斷直線與橢圓位置關(guān)系的根本方法是解直線方程和橢圓方程組成的方程組[2]把直線方程代入橢圓方程后,若一元二次方程好解,則應(yīng)解方程;若一元二次方程不好解,
2024-11-09 12:55
【摘要】圓錐曲線的應(yīng)用高三備課組一、基本知識概要:解析幾何在日常生活中應(yīng)用廣泛,如何把實際問題轉(zhuǎn)化為數(shù)學問題是解決應(yīng)用題的關(guān)鍵,而建立數(shù)學模型是實現(xiàn)應(yīng)用問題向數(shù)學問題轉(zhuǎn)化的常用常用方法。本節(jié)主要通過圓錐曲線在實際問題中的應(yīng)用,說明數(shù)學建模的方法,理解函數(shù)與方程、等價轉(zhuǎn)化、分類討論等數(shù)學思想。二、例題:例題1:設(shè)有一顆慧星沿一橢圓軌道
2024-11-09 08:48
【摘要】圓錐曲線橢圓雙曲線拋物線定義標準方程幾何性質(zhì)直線與圓錐曲線的位置關(guān)系一、知識點框架雙曲線的定義:1212||||||2,(02||)MFMFaaFF????橢圓的定義:|)|2(,2||||2121FFaaM
2025-08-16 02:16
【摘要】2020屆高考數(shù)學復(fù)習強化雙基系列課件79《圓錐曲線-圓錐曲線的應(yīng)用》圓錐曲線定義應(yīng)用第1課時一、基本知識概要:·涉及圓錐曲線上的點與兩個焦點構(gòu)成的三角形,常用第一定義結(jié)合正余弦定理;·涉及焦點、準線、圓錐曲線上的點,常用統(tǒng)一的定義。橢圓的定義:點集M={P||PF1
2024-11-11 08:49
【摘要】圓錐曲線選擇題1.過雙曲線的右頂點作斜率為-1的直線,該直線與雙曲線的兩條漸近線的交點分別為,若,則此雙曲線的離心率是()A.B.C.2D.2.已知是拋物線上一動點,則點到直線和軸的距離之和的最小值是()A.B.C.D.23.已知點是雙曲線的左焦點,點是該雙曲線的右頂點,過且垂直于軸的直線與雙
2025-08-05 04:26
【摘要】解析幾何專題·經(jīng)典結(jié)論收集整理:宋氏資料2016-1-1有關(guān)解析幾何的經(jīng)典神級結(jié)論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.以焦點弦為直徑的圓必與對應(yīng)準線相離.(第二定義)4.以焦點半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54