freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

圓錐曲線-橢圓-雙曲線-拋物線-知識(shí)點(diǎn)總結(jié)-例題習(xí)題精講-詳細(xì)答案(更新版)

  

【正文】 個(gè)頂點(diǎn),連結(jié)AP 和AQ分別交相應(yīng)于焦點(diǎn)F的橢圓準(zhǔn)線于M、N兩點(diǎn),則MF⊥NF。和分別叫做橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)。 知能梳理【橢圓】一、橢圓的定義橢圓的第一定義:平面內(nèi)一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和等于常數(shù) ,這個(gè)動(dòng)點(diǎn)的軌跡叫橢圓。 ③線段,分別叫做橢圓的長(zhǎng)軸和短軸。即:到焦點(diǎn)的距離與到準(zhǔn)線的距離的比為離心率的點(diǎn)所構(gòu)成的圖形,也即上圖中有。 當(dāng)|MF1|-|MF2|=2a時(shí),曲線僅表示焦點(diǎn)F2所對(duì)應(yīng)的一支; 當(dāng)|MF1|-|MF2|=-2a時(shí),曲線僅表示焦點(diǎn)F1所對(duì)應(yīng)的一支; 當(dāng)2a=|F1F2|時(shí),軌跡是一直線上以FF2為端點(diǎn)向外的兩條射線;當(dāng)2a>|F1F2|時(shí),動(dòng)點(diǎn)軌跡不存在。二、拋物線的性質(zhì)三、相關(guān)定義通徑:過(guò)拋物線的焦點(diǎn)且垂直于對(duì)稱軸的弦H1H2稱為通徑;通徑:|H1H2|=2P弦長(zhǎng)公式:焦點(diǎn)弦:過(guò)拋物線焦點(diǎn)的弦,若,則(1) x0+, (2),-p2(3) 弦長(zhǎng),,即當(dāng)x1=x2時(shí),通徑最短為2p(4) 若AB的傾斜角為θ,則=(5)+=四、點(diǎn)、直線與拋物線的位置關(guān)系需要詳細(xì)的拋物線的資料,. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” ..“龍奇跡【學(xué)習(xí)資料網(wǎng)】”【圓錐曲線與方程】一、圓錐曲線的統(tǒng)一定義平面內(nèi)的動(dòng)點(diǎn)P(x,y)到一個(gè)定點(diǎn)F(c,0)的距離與到不通過(guò)這個(gè)定點(diǎn)的一條定直線的距離之比是一個(gè)常數(shù)e(e>0),則動(dòng)點(diǎn)的軌跡叫做圓錐曲線?!纠慨?dāng)取何值時(shí),直線:與橢圓相切,相交,相離?解: ①代入②得化簡(jiǎn)得當(dāng)即時(shí),直線與橢圓相切;當(dāng),即時(shí),直線與橢圓相交;當(dāng),即或時(shí),直線與橢圓相離。16,從而|EE′|=(-)-(-4)=。設(shè)橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上。解法三:設(shè)橢圓方程為直線不平行于y軸,否則AB中點(diǎn)在x軸上與直線中點(diǎn)矛盾。解:(1)設(shè)A(x1,y1),B(x2, y2) 切線PA:,PB:∵P點(diǎn)在切線PA、PB上,∴∴直線AB的方程為(2)在直線AB方程中,令y=0,則M(,0);令x=0,則N(0,)∴ ①∵2b=8 ∴b=4 代入①得a2 =25, b2 =16∴橢圓C方程: (3) 假設(shè)存在點(diǎn)P(x0,y0)滿足PA⊥PB,連接OA、OB由|PA|=|PB|知,四邊形PAOB為正方形,|OP|=|OA| ∴ ① 又∵P點(diǎn)在橢圓C上 ∴ ②由①②知x ∵ab0 ∴a2 -b20(1)當(dāng)a2-2b20,即ab時(shí),橢圓C上存在點(diǎn),由P點(diǎn)向圓所引兩切線互相垂直;(2)當(dāng)a2-2b20,即bab時(shí),橢圓C上不存在滿足條件的P點(diǎn)【例】已知點(diǎn)B(-1,0),C(1,0),P是平面上一動(dòng)點(diǎn),且滿足(1)求點(diǎn)P的軌跡C對(duì)應(yīng)的方程;(2)已知點(diǎn)A(m,2)在曲線C上,過(guò)點(diǎn)A作曲線C的兩條弦AD和AE,且AD⊥AE,判斷:直線DE是否過(guò)定點(diǎn)?試證明你的結(jié)論。時(shí),方程①有兩個(gè)不等的實(shí)數(shù)根故直線l方程為 【例】已知?jiǎng)狱c(diǎn)與雙曲線的兩個(gè)焦點(diǎn)、的距離之和為定值,且的最小值為.(1)求動(dòng)點(diǎn)的軌跡方程; (2)若已知,、在動(dòng)點(diǎn)的軌跡上且,求實(shí)數(shù)的取值范圍.解:(1)由已知可得: , ∴ ∴ 所求的橢圓方程為 。解:由題意,可設(shè)l的方程為y=x+m,-5<m<0。【例】已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2)。故當(dāng)k<-或-<k<或<k<時(shí),方程(*)有兩不等實(shí)根,l與C有兩個(gè)交點(diǎn)。 需要更多的高考數(shù)學(xué)復(fù)習(xí)資料,. “高考復(fù)習(xí)資料 高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié) 例題精講(詳細(xì)解答)” ..“龍奇跡【學(xué)習(xí)資料網(wǎng)】”解:(Ⅰ)設(shè)橢圓長(zhǎng)半軸長(zhǎng)及半焦距分別為,由已知得,w。o。(Ⅰ) 求a,b的值;(Ⅱ) C上是否存在點(diǎn)P,使得當(dāng)L繞F轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有的P的坐標(biāo)與L的方程;若不存在,說(shuō)明理由考點(diǎn):本題考查解析幾何與平面向量知識(shí)綜合運(yùn)用能力,第一問(wèn)直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計(jì)算,第二問(wèn)利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問(wèn)題,注意特殊情況的處理。綜上,C上存在點(diǎn)使成立,此時(shí)的方程為【例】已知橢圓:的右頂點(diǎn)為,過(guò)的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為.(I)求橢圓的方程;(II)設(shè)點(diǎn)在拋物線:上,在點(diǎn)處的切線與交于點(diǎn).當(dāng)線段的中點(diǎn)與的中點(diǎn)的橫坐標(biāo)相等時(shí),求的最小值.解:(I)由題意得所求的橢圓方程為 (II)不妨設(shè)則拋物線在點(diǎn)P處的切線斜率為,直線MN的方程為,將上式代入橢圓的方程中,得,即,因?yàn)橹本€MN與橢圓有兩個(gè)不同的交點(diǎn),所以有,設(shè)線段MN的中點(diǎn)的橫坐標(biāo)是,則 設(shè)線段PA的中點(diǎn)的橫坐標(biāo)是,則,由題意得,即有,其中的或;當(dāng)時(shí)有,因此不等式不成立;因此,當(dāng)時(shí)代入方程得,將代入不等式成立,因此的最小值為1.【例】設(shè)橢圓E: (a,b0)過(guò)M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(I)求橢圓E的方程;(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫(xiě)出該圓的方程,并求|AB |的取值范圍,若不存在
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1