【正文】
XXX(論文題目 ) [第 10 頁(yè),共 15 頁(yè) ] 證明 : 由定理?xiàng)l件 ,| nu (x)| ≤ nq , 對(duì) ? nN,x∈ D 成立 ,而幾何級(jí)數(shù) Σ nq 收斂 ,由優(yōu)級(jí)數(shù)判別法知 ,函數(shù)項(xiàng)級(jí)數(shù) ???1 )(n n xu在 D 上一致收斂 .(注 :當(dāng)定理 6 條件成立時(shí) ,級(jí)數(shù) ???1 )(n n xu在 D上收斂且絕對(duì) 收 斂) (極限形式) 設(shè) nu (x) 為定義在數(shù)集 D 上的函數(shù)列 ,若1)(|)(|li m ????? qxqxun nn ,對(duì) ? x ∈ D成立 ,則函數(shù)項(xiàng)級(jí)數(shù)在 D 上一致收斂 。 (2) 若對(duì) ? xD? , ()px p1則函數(shù)項(xiàng)級(jí)數(shù) ???1 )(n n xu 在 D 上不一致收斂 。 由于 01lim 20 ?? ?? xx ex ,所以 xexxf ??? 1)( 2 在 10 ??x 有界且對(duì)于任意給定的 0?? ,存在 0?? ,當(dāng) ),0( ??x 時(shí),有 ????xex12 。 ( )nfx在? ?,ab 上一致收斂于 ()fx. 8 利用 Dini 定理(函數(shù)項(xiàng)級(jí)數(shù)和函數(shù)列均可用) 9 利用結(jié)論:設(shè)冪級(jí)數(shù)1nnn ax???的收斂半徑 0R? ,則 ( i)當(dāng)1nnn ax???或0 ()nnn a R?? ??收斂時(shí),1nnn ax???在 ? ?0,R (或 ? ?,0R? )上一致收斂; ( ii)當(dāng)1nnn ax???在 ? ?,RR? 內(nèi)一致收斂當(dāng)且僅當(dāng)1nnn aR???在 ? ?,RR? 上一致收斂 本文旨在對(duì)上述 函數(shù)項(xiàng)級(jí)數(shù)收斂判別的方法進(jìn)行全面的總結(jié)和探究 . 關(guān)鍵詞: 函數(shù)項(xiàng)級(jí)數(shù)、 一致收斂 XXXXXXX(論文題目 ) [第 2 頁(yè),共 15 頁(yè) ] Abstract Series expressed by function terms in the field of mathematics and engineering science itself has important series and function of uniform convergence problem often is the key point of mathematical analysis,it is difficult,not easy to understand and function studies series one of the basic problem is that the uniform convergence ,but the uniform convergence criterion is more difficult,in the uniform convergence of the series expressed by function terms consistent with the part and function of convergence are natural thought is the present,the Posistive SeriesD’Alembertcriterion,Cauchycriterion ,Raabe discriminant method and the limits of their form has been generalized to function successfully a series of uniform convergence addition,there are a number of discriminant function is a series of uniform convergence of the method ,these methods depending on the conditions: 1. in or limit function can be calculated and the function,can use the definition. 2. more than using the uniform convergence:the necessary and sufficient condition of uniform convergence in the range is on the uniform convergence to zero,the necessary and sufficient condition of uniform convergence in the is=0. 3. using Cauchy criterion(function series and column are available). 4. using the function of the M series of uniform convergence (Weierstrass discriminant method). 5. using the series of uniform convergence of Dimchler discriminant method and Abel discriminant method. 6. with the conclusion that if a function listed in converges to,and each in satisfied the Lipschitz condition,that is,make,n=1,2,… ,the uniform convergence in. 7. using the conclsion:if the convergence in differentiable function on,and on the uniform convergence in the. 8. Dini theorem(function series and column are available) 9. use conclusion:a power series and column are available,and is (i) when or convergence,uniform convergence on (or)。除了文中特別加以標(biāo)注引用的內(nèi)容外,沒(méi)有剽竊、抄襲、造假等違反學(xué)術(shù)道德、學(xué)術(shù)規(guī)范和侵權(quán)行為,本人完全意識(shí)到本聲明的法 律后果由本人承擔(dān)。 稱(chēng) )()(1 xuxsnk kn ???, ,Ex? n=1,2, .? 為函數(shù)項(xiàng)級(jí)數(shù)的部分和函數(shù)列。 例如我們 在數(shù)學(xué)分析的課本 中 , 也介紹了用阿貝爾判別法和狄利 克雷判別法 掌握 解答級(jí)數(shù) 的問(wèn)題 , 以下介紹 級(jí)數(shù)收斂性理論中阿貝爾判別法和狄利 克雷判別法及魏爾斯特拉斯判別法 : 設(shè)函數(shù)項(xiàng)級(jí)數(shù) )(xun? 定義在數(shù)集 D上, ?nM 為收斂的正項(xiàng)級(jí)數(shù),若對(duì)一切x D? ,有 | )(xun |? nM , n=1, 2 ,? 則函數(shù)項(xiàng)級(jí)數(shù) )(xun? 在 D 上 一致收斂 . 證明 : 假設(shè)正項(xiàng)級(jí)數(shù) ?nM 收斂,根據(jù)數(shù)項(xiàng)級(jí)數(shù)的柯西準(zhǔn)則,任給正數(shù) ? ,存在某正整數(shù) N ,使得當(dāng) nN 及任何正整數(shù) p,有 | pnn MM ?? ???1 |= ???? ?? pnn MM ?1 又對(duì)一切 Dx? 有 | )()(1 xuxu pnn ?? ?? ? | |)(||)(| 1 xuxu pnn ?? ??? ? ????? ?? pnn MM ?1 根據(jù)函數(shù)項(xiàng)級(jí)數(shù)一致收斂的柯西準(zhǔn)則,級(jí)數(shù) )(xun? 在 D 上一致收斂 定理 2 ( 阿貝 爾判別法 ) (1) )(xun? 在區(qū)間 I 上一致