【摘要】;菲華論壇;在西墎城,要小心壹點.壹旦有人對付烈焰,你就立刻帶著所有烈焰の人,進入鞠氏宅院.”鞠言對高鳳說道.“嗯,俺明白.”高鳳點頭.她也想跟著鞠言壹起走,但是,她不能將整個烈焰商會扔下.至于帶著烈焰の所有人跟鞠言走,那就更不可能了.“事不宜遲,鞠言,俺們立刻返回藍曲郡城.”鄒尚云揮手說道.兩人當即,便離開西墎
2024-08-13 23:24
【摘要】立體幾何-平行與垂直練習題1.空間四邊形SABC中,SO平面ABC,O為ABC的垂心,求證:(1)AB平面SOC(2)平面SOC平面SAB2.如圖所示,在正三棱柱ABC-A1B1C1中,E,M分別為BB1,A1C的中點,求證:(1)EM平面AA1C1C;(2)平面A1EC平面AA1C1C;3.如圖,矩形ABCD中,AD⊥平面ABE,BE=BC,F為C
2025-04-04 05:14
【摘要】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復習建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問題,常需作輔助線,但有時卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過向量的代數(shù)計算解決問題,無須添加輔助線。用空間向量解立幾問題
2024-11-09 12:27
【摘要】空間向量應用4在立體幾何證明中的應用前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明問題。立體幾何中的有關(guān)證明問題,大致可分為“平行”“垂直”兩大類:平行:線面平行、面面平行垂
2024-07-29 06:57
【摘要】第一篇:高中立體幾何 高中立體幾何的學習 高中立體幾何的學習主要在于培養(yǎng)空間抽象能力的基礎上,發(fā)展學生的邏輯思維能力和空間想象能力。立體幾何是中學數(shù)學的一個難點,學生普遍反映“幾何比代數(shù)難學”。但...
2024-11-15 06:58
【摘要】第一篇:立體幾何證明中常用知識點 立體幾何證明中常用知識點 一、判定兩線平行的方法 1、平行四邊形 2、中位線定理 3、如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條...
2024-11-12 12:29
【摘要】第一篇:立體幾何教材分析 《數(shù)學必修模塊2》立體幾何教材分析 長沙市二十六中 為了更好地組織實施好本模塊的教學,我們高一年級數(shù)學備課組成員以問題為載體,主要對如下課題進行了研究:(1)課標中所提...
2024-11-15 06:00
【摘要】立體幾何之外接球秒殺第一種長方體正方體模型長方體各頂點可在一個球面上,長為abc,,,其體對角線為l.當球為長方體的外接球時,截面圖為長方體的對角面和其外接圓,故球的半徑例1(1)已知各頂點都在同一球面上的正四棱柱的高為4,體積為16,則這個球的表面積是()A.16pB.20pC.24
2024-08-02 12:09
【摘要】立體幾何題型與方法一、考點回顧1.平面(1)平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(2)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣,可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(3)證明共點問題,一般是先證明兩條直線交于一點,再證明這點在第三條直線上,而這一點是兩
2024-08-02 12:16
【摘要】立體幾何之外接球問題一講評課1課時總第課時月日1、已知如圖所示的三棱錐的四個頂點均在球的球面上,和所在的平面互相垂直,,,,則球的表面積為(?)A.B.C.D.2、設三棱柱的側(cè)棱垂直于底面,所有棱的長都為,頂點都在一個球面上,則該球的表面積為(??)A.B.C.D
2025-06-25 00:21
【摘要】第一篇:立體幾何三視圖及線面平行經(jīng)典練習 立體幾何三視圖 例 1、若某空間幾何體的三視圖如圖所示,則該幾何體的體積是 ()(A)2(B)1(C)231(D) 3例 2、一個幾何體的三視圖如...
2024-11-16 23:04
【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-04 17:17