【總結(jié)】第一篇:立體幾何證明已經(jīng)修改 F 1、如圖,在五面體ABCDEF中,F(xiàn)A^平面 DABC,DA//DB//C AF=AB=BC=FE=F^,EAB為,ECAD的M中點,1AD2(1)求異面直線...
2024-10-14 08:53
【總結(jié)】第一篇:立體幾何證明大題 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點,BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、如...
2024-11-12 13:02
【總結(jié)】公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)。αABl),,,????????????llBAlBlA(或公理2過不在一條直線上的三點,有且只有一個平面????????CBACBA,,,,使,有且只有一個平面三點不共線αABC公理3如果兩個
2024-08-14 10:54
【總結(jié)】立體幾何??甲C明題匯總考點:線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;(2)平面平面??键c:線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點,求證:平面。考點:線面垂直的判定4、已知中,面,,求證:面.
2025-03-25 06:44
【總結(jié)】第一篇:立體幾何的證明 青于藍(lán)教育 《立體幾何》專題復(fù)習(xí)一 點、直線、平面之間的位置關(guān)系 第一部分:考點梳理 (一)空間直線、平面之間的位置關(guān)系 1、平面的基本性質(zhì) 公理1:如果一條直線...
2024-11-12 12:33
【總結(jié)】文科立體幾何證明線面、面面平行,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.①證明MN∥平面PAB;②求四面體N-BCM的體積.2.如圖,四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC
2025-03-25 03:14
【總結(jié)】第一篇:立體幾何規(guī)范性證明 立體幾何證明規(guī)范性訓(xùn)練(1) 1、如圖,M,N,K分別是正方體ABCD-A1B1C1D1的棱AB,CD,C1D1的中點.(1)求證:AN//平面A1MK;(2)求證:M...
2024-10-14 09:02
【總結(jié)】第一篇:立體幾何證明大題答案 立體幾何證明大題答案 1.(本題滿分9分) 證明: ü(1)AE=EDüyTEF//DC?AF=FCt??EF?平面BCDyTEF//平面BCD DCì平面BC...
2024-11-12 12:47
【總結(jié)】第一篇:高中立體幾何證明方法 高中立體幾何 一、平行與垂直關(guān)系的論證 由判定定理和性質(zhì)定理構(gòu)成一套完整的定理體系,在應(yīng)用中:低一級位置關(guān)系判定高一級位置關(guān)系;高一級位置關(guān)系推出低一級位置關(guān)系,前...
2024-10-28 20:01
【總結(jié)】第一篇:立體幾何常見證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過a的平面B與平面...
2024-11-15 05:33
【總結(jié)】立體幾何中的軌跡問題高考數(shù)學(xué)有一類學(xué)科內(nèi)的綜合題,它們的新穎性、綜合性,值得我們重視,在知識網(wǎng)絡(luò)交匯點處設(shè)計試題是高考命題改革的一個方向,以空間問題為為背景的軌跡問題作為解析幾何與立體幾何的交匯點,由于知識點多,數(shù)學(xué)思想和方法考查充分,求解比較困難。通常要求學(xué)生有較強的空間想象能力,以及能夠把空間問題轉(zhuǎn)化到平面上,再結(jié)合解析幾何方法求解,以下精選幾個問題來對這一問題進(jìn)行探討,旨在探索題型規(guī)律
2024-10-04 16:57
【總結(jié)】立體幾何專題1.如圖4,在邊長為1的等邊三角形中,分別是邊上的點,,是的中點,與交于點,將沿折起,得到如圖5所示的三棱錐,其中.(1)證明://平面;(2)證明:平面;(3)當(dāng)時,求三棱錐的體積.【解析】(1)在等邊三角形中,,在折疊后的三棱錐中也成立,,平面,平面,平面;(2)在等邊三角形中,是的中點,所以①,.在
2025-05-03 00:35
【總結(jié)】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。 (1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點...
2024-11-15 05:28
【總結(jié)】第一篇:立體幾何證明大題2 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點,BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、...
2024-11-12 12:45