【摘要】寧波大學理學院本科畢業(yè)設計(論文)I編號:本科畢業(yè)設計(論文)題目:構造法證明不等式
2025-07-07 18:21
【摘要】寧波大學理學院本科畢業(yè)設計(論文)編號: 本科畢業(yè)設計(論文)題目:構造法證明不等式Constructing
2025-06-28 00:56
【摘要】近年來在高考解答題中,常滲透不等式證明的內容,而不等式的證明是高中數(shù)學中的一個難點,它可以考察學生邏輯思維能力以及分析問題和解決問題的能力。特別值得一提的是,高考中可以用“放縮法”證明不等式的頻率很高,它是思考不等關系的樸素思想和基本出發(fā)點,?有極大的遷移性,對它的運用往往能體現(xiàn)出創(chuàng)造性。“放縮法”它可以和很多知識內容結合,對應變能力有較高的要求。因為放縮必須有目標,而且要恰到
2025-04-16 23:50
【摘要】第一篇:不等式證明,均值不等式 1、設a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】第一篇:導數(shù)與數(shù)列不等式的綜合證明問題 導數(shù)與數(shù)列不等式的綜合證明問題 典例:(2017全國卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設m為整數(shù),且...
2024-10-28 18:52
【摘要】第一篇:構造法證明函數(shù)不等式 構造法證明函數(shù)不等式 1、利用導數(shù)研究函數(shù)的單調性極值和最值,再由單調性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點. 2、解題技巧是構造...
2024-10-27 20:30
【摘要】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構造一個函數(shù)然后做差求導,確定單調性??墒沁€是一點思路...
2024-10-30 22:00
【摘要】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2024-10-28 02:13
【摘要】第一篇:比較法證明不等式 比較法證明不等式 、最重要的方法之一,它是兩個實數(shù)大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。 (1)差值比較法的...
2024-11-06 07:34
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質:推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【摘要】1.幾個重要的放縮不等式2.不等式的幾個常見結論練習:
2025-06-26 05:29