【摘要】1.1.2瞬時變化率——導(dǎo)數(shù)(二)【學(xué)習(xí)要求】1.理解函數(shù)的瞬時變化率——導(dǎo)數(shù)的準(zhǔn)確定義和極限形式的意義,并掌握導(dǎo)數(shù)的幾何意義.2.理解導(dǎo)函數(shù)的概念,了解導(dǎo)數(shù)的物理意義和實際意義.【學(xué)法指導(dǎo)】導(dǎo)數(shù)就是瞬時變化率,理解導(dǎo)數(shù)概念可以結(jié)合曲線切線的斜率,結(jié)合瞬時速度,瞬時加速度;函數(shù)f(x)
2025-11-08 17:03
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)生活中的優(yōu)化問題學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟【學(xué)習(xí)目標(biāo)】;初步會解有關(guān)函數(shù)最大值、最小值的實際問題(一般指單峰函數(shù))。?!緦W(xué)習(xí)重點(diǎn)】利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題?!緦W(xué)習(xí)難點(diǎn)】利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題。學(xué)習(xí)方
2025-11-10 17:30
【摘要】導(dǎo)數(shù)的運(yùn)算練習(xí)與解析1一、選擇題1、已知函數(shù)f(x)在x=1處的導(dǎo)數(shù)為3,則f(x)的解析式可能為()A3(x-1)B.2(x-1)C.2x-1D.x-1解析:求導(dǎo)后帶入驗證可得選A.[]2、曲線y=x3在點(diǎn)P處的切線斜率為3,則P點(diǎn)的坐標(biāo)為()A.(-2,-8
2025-11-25 19:53
【摘要】《生活中的優(yōu)化問題舉例》教學(xué)目標(biāo)?掌握導(dǎo)數(shù)在生活中的優(yōu)化問題問題中的應(yīng)用?教學(xué)重點(diǎn):?掌握導(dǎo)數(shù)生活中的優(yōu)化問題問題中的應(yīng)用.規(guī)格(L)2價格(元)問題背景:飲料瓶大小對飲料公司利潤的影響下面是某品牌飲料的三種規(guī)格不同的產(chǎn)品,若它們的價格如下表所示,則(
2025-11-09 12:13
【摘要】??.,.,,.,問題解決一些生活中的優(yōu)化數(shù)本節(jié)我們運(yùn)用導(dǎo)值的有力工具小導(dǎo)數(shù)是求函數(shù)最大我們知道習(xí)前面的學(xué)過通通常稱為這些問題最省、效率最高等問題最大、用料生活中經(jīng)常遇到求利潤優(yōu)化問題高汽油的使用效率何時最例1?????????""2?,1:,.vw,h/km:vL:w,
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)第三章第10課導(dǎo)數(shù)在實際生活中的應(yīng)用(1)教學(xué)案蘇教版選修1-1班級:高二()班姓名:____________教學(xué)目標(biāo):通過生活中優(yōu)化問題的學(xué)習(xí),體會導(dǎo)數(shù)在解決實際問題中的作用,促進(jìn)學(xué)生全面認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值;通過實際問題的研究,促進(jìn)學(xué)生分析問題、解決問題以及數(shù)
2025-11-14 01:03
【摘要】§導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.單調(diào)性課時目標(biāo)掌握導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系,會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.1.導(dǎo)函數(shù)的符號與函數(shù)的單調(diào)性的關(guān)系:如果在某個區(qū)間內(nèi),函數(shù)y=f(x)的導(dǎo)數(shù)________,則函數(shù)y=f(x)這個區(qū)間上是增函數(shù);如果在某個區(qū)
2024-12-05 09:29
【摘要】第5課時導(dǎo)數(shù)的綜合應(yīng)用、極值、最值等..函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心內(nèi)容,函數(shù)思想貫穿中學(xué)數(shù)學(xué)全過程.導(dǎo)數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺”,可以把函數(shù)、方程、不等式、圓錐曲線等有機(jī)地聯(lián)系在一起,在能力立意的命題思想指導(dǎo)下,與導(dǎo)數(shù)相關(guān)的問題已成為高考數(shù)學(xué)命題的必考考點(diǎn)之一.函數(shù)與方
2024-12-05 06:30
【摘要】1.微積分基本定理一、基礎(chǔ)過關(guān)1.若F′(x)=x2,則F(x)的解析式正確的是______.①F(x)=13x3②F(x)=x3③F(x)=13x3+1④F(x)=13x3+c(c為常數(shù))2.設(shè)f(x)=?????x+1?x≤1?,12x2?x1?,則?
2024-12-05 06:24
【摘要】1.函數(shù)的和、差、積、商的導(dǎo)數(shù)一、基礎(chǔ)過關(guān)1.下列結(jié)論不正確的是________.(填序號)①若y=3,則y′=0;②若f(x)=3x+1,則f′(1)=3;③若y=-x+x,則y′=-12x+1;④若y=sinx+cosx,則y′=cosx+si
2024-12-05 06:25
【摘要】第2章推理與證明§合情推理與演繹推理2.合情推理(一)一、基礎(chǔ)過關(guān)1.?dāng)?shù)列5,9,17,33,x,…中的x等于________2.f(n)=1+12+13+…+1n(n∈N*),計算得f(2)=32,f(4)2,f(8)52,f(16)3,f(32)
【摘要】1.最大值與最小值一、基礎(chǔ)過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是________,________.2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是________.3.函數(shù)y=lnxx的最大值為________.4.函數(shù)f(x)=xex的最